update test
This commit is contained in:
Binary file not shown.
@@ -518,9 +518,9 @@ $$
|
||||
% Gleason's theorem (Theorem 1.1.15 in~\cite{parthasarathy2005mathematical})
|
||||
|
||||
% Let $\mathscr{H}$ be a Hilbert space over $\mathbb{C}$ or $\mathbb{R}$ of dimension $n\geq 3$. Let $\mu$ be a state on the space $\mathscr{P}$ of projections on $\mathscr{H}$. Then there exists a unique density operator $\rho$ such that
|
||||
% \[
|
||||
% $$
|
||||
% \mu(P)=\operatorname{Tr}(\rho P)
|
||||
% \]
|
||||
% $$
|
||||
% for all $P\in\mathscr{P}$. $\mathscr{P}$ is the space of all orthogonal projections on $\mathscr{H}$.
|
||||
% \end{theorem}
|
||||
|
||||
@@ -532,7 +532,7 @@ $$
|
||||
|
||||
% This theorem is a very important theorem in non-commutative probability theory; it states that any state on the space of all orthogonal projections on $\mathscr{H}$ can be represented by a density operator.
|
||||
|
||||
The counterpart of the random variable in the non-commutative probability theory is called an observable, which is a Hermitian operator on $\mathscr{H}$ (for all $\psi,\phi$ in the domain of $A$, we have $\langle A\psi,\phi\rangle=\langle\psi,A\phi\rangle$. This kind of operator ensures that our outcome interpreted as probability is a real number).
|
||||
The counterpart of the random variable in the non-commutative probability theory is called an observable, which is a Hermitian operator on $\mathscr{H}$ (for all $\psi,\phi$ in the domain of $A$, we have $\langle A\psi,\phi\rangle=\langle\psi,A\phi\rangle$. This kind of operator ensures that our outcome interpreted as probability is a real number).
|
||||
|
||||
\begin{defn}
|
||||
\label{defn:observable}
|
||||
@@ -540,30 +540,210 @@ The counterpart of the random variable in the non-commutative probability theory
|
||||
|
||||
Let $\mathscr{B}(\mathbb{R})$ be the set of all Borel sets on $\mathbb{R}$.
|
||||
|
||||
A random variable on the Hilbert space $\mathscr{H}$ is a projection-valued map (measure) $P:\mathscr{B}(\mathbb{R})\to\mathscr{P}$.
|
||||
An (real-valued) observable (random variable) on the Hilbert space $\mathscr{H}$, denoted by $A$, is a projection-valued map (measure) $P_A:\mathscr{B}(\mathbb{R})\to\mathscr{P}(\mathscr{H})$.
|
||||
|
||||
With the following properties:
|
||||
Satisfies the following properties:
|
||||
\begin{itemize}
|
||||
\item $P(\emptyset)=O$ (the zero projection)
|
||||
\item $P(\mathbb{R})=I$ (the identity projection)
|
||||
\item $P_A(\emptyset)=O$ (the zero projection)
|
||||
\item $P_A(\mathbb{R})=I$ (the identity projection)
|
||||
\item For any sequence $A_1,A_2,\cdots,A_n\in \mathscr{B}(\mathbb{R})$, the following holds:
|
||||
\begin{itemize}
|
||||
\item $P(\bigcup_{i=1}^n A_i)=\bigvee_{i=1}^n P(A_i)$
|
||||
\item $P(\bigcap_{i=1}^n A_i)=\bigwedge_{i=1}^n P(A_i)$
|
||||
\item $P(A^c)=I-P(A)$
|
||||
\item If $A_j$ are mutually disjoint (that is $P(A_i)P(A_j)=P(A_j)P(A_i)=O$ for $i\neq j$), then $P(\bigcup_{j=1}^n A_j)=\sum_{j=1}^n P(A_j)$
|
||||
\item $P_A(\bigcup_{i=1}^n A_i)=\bigvee_{i=1}^n P_A(A_i)$
|
||||
\item $P_A(\bigcap_{i=1}^n A_i)=\bigwedge_{i=1}^n P_A(A_i)$
|
||||
\item $P_A(A^c)=I-P_A(A),\forall A\in\mathscr{B}(\mathbb{R})$
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{defn}
|
||||
|
||||
If $A$ is an observable determined by the map $P_A:\mathcal{B}(\mathbb{R})\to\mathcal{P}(\mathscr{H})$, $P_A$ is a spectral measure (a complete additive orthogonal projection valued measure on $\mathcal{B}(\mathbb{R})$). And every spectral measure can be represented by an observable. \cite{parthasarathy2005mathematical}
|
||||
|
||||
\begin{prop}
|
||||
If $A_j$ are mutually disjoint (that is $P_A(A_i)P_A(A_j)=P_A(A_j)P_A(A_i)=O$ for $i\neq j$), then $P_A(\bigcup_{j=1}^n A_j)=\sum_{j=1}^n P_A(A_j)$
|
||||
\end{prop}
|
||||
|
||||
\begin{defn}
|
||||
\label{defn:probability_of_random_variable}
|
||||
Probability of a random variable:
|
||||
|
||||
For a system prepared in state $\rho$, the probability that the random variable given by the projection-valued measure $P$ is in the Borel set $A$ is $\operatorname{Tr}(\rho P(A))$.
|
||||
Let $A$ be a real-valued observable on a Hilbert space $\mathscr{H}$. $\rho$ be a state. The probability of observing the outcome $E\in \mathcal{B}(\mathbb{R})$ is given by:
|
||||
|
||||
$$
|
||||
\mu(E)=\operatorname{Tr}(\rho P_A(E))
|
||||
$$
|
||||
\end{defn}
|
||||
|
||||
When operators commute, we recover classical probability measures.
|
||||
Restriction of a quantum state to a commutative subalgebra defines an ordinary probability measure.
|
||||
|
||||
\begin{examples}
|
||||
Let
|
||||
$$
|
||||
Z=\begin{pmatrix}
|
||||
1 & 0\\
|
||||
0 & -1
|
||||
\end{pmatrix}.
|
||||
$$
|
||||
|
||||
The eigenvalues of $Z$ are $+1$ and $-1$, with corresponding normalized eigenvectors
|
||||
|
||||
$$
|
||||
\ket{0}=\begin{pmatrix}1\\0\end{pmatrix},
|
||||
\qquad
|
||||
\ket{1}=\begin{pmatrix}0\\1\end{pmatrix}.
|
||||
$$
|
||||
|
||||
The spectral projections are
|
||||
$$
|
||||
P_Z(\{1\}) = \ket{0}\bra{0}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
1 & 0\\
|
||||
0 & 0
|
||||
\end{pmatrix},
|
||||
\qquad
|
||||
P_Z(\{-1\}) = \ket{1}\bra{1}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
0 & 0\\
|
||||
0 & 1
|
||||
\end{pmatrix}.
|
||||
$$
|
||||
|
||||
The associated projection-valued measure $P_Z$ satisfies
|
||||
$$
|
||||
P_Z(\{1,-1\}) = I,
|
||||
\qquad
|
||||
P_Z(\emptyset)=0.
|
||||
$$
|
||||
|
||||
%==============================
|
||||
% 4. Example: X measurement and its PVM
|
||||
%==============================
|
||||
|
||||
Let
|
||||
$$
|
||||
X=\begin{pmatrix}
|
||||
0 & 1\\
|
||||
1 & 0
|
||||
\end{pmatrix}.
|
||||
$$
|
||||
|
||||
The normalized eigenvectors of $X$ are
|
||||
$$
|
||||
\ket{+}=\frac{1}{\sqrt{2}}\left(\ket{0}+\ket{1}\right),
|
||||
\qquad
|
||||
\ket{-}=\frac{1}{\sqrt{2}}\left(\ket{0}-\ket{1}\right),
|
||||
$$
|
||||
with eigenvalues $+1$ and $-1$, respectively.
|
||||
|
||||
The corresponding spectral projections are
|
||||
$$
|
||||
P_X(\{1\}) = \ket{+}\bra{+}
|
||||
=
|
||||
\frac{1}{2}
|
||||
\begin{pmatrix}
|
||||
1 & 1\\
|
||||
1 & 1
|
||||
\end{pmatrix},
|
||||
$$
|
||||
$$
|
||||
P_X(\{-1\}) = \ket{-}\bra{-}
|
||||
=
|
||||
\frac{1}{2}
|
||||
\begin{pmatrix}
|
||||
1 & -1\\
|
||||
-1 & 1
|
||||
\end{pmatrix}.
|
||||
$$
|
||||
|
||||
%==============================
|
||||
% 5. Noncommutativity of the projections
|
||||
%==============================
|
||||
|
||||
Compute
|
||||
$$
|
||||
P_Z(\{1\})P_X(\{1\})
|
||||
=
|
||||
\begin{pmatrix}
|
||||
1 & 0\\
|
||||
0 & 0
|
||||
\end{pmatrix}
|
||||
\cdot
|
||||
\frac{1}{2}
|
||||
\begin{pmatrix}
|
||||
1 & 1\\
|
||||
1 & 1
|
||||
\end{pmatrix}
|
||||
=
|
||||
\frac{1}{2}
|
||||
\begin{pmatrix}
|
||||
1 & 1\\
|
||||
0 & 0
|
||||
\end{pmatrix}.
|
||||
$$
|
||||
|
||||
On the other hand,
|
||||
$$
|
||||
P_X(\{1\})P_Z(\{1\})
|
||||
=
|
||||
\frac{1}{2}
|
||||
\begin{pmatrix}
|
||||
1 & 1\\
|
||||
1 & 1
|
||||
\end{pmatrix}
|
||||
\cdot
|
||||
\begin{pmatrix}
|
||||
1 & 0\\
|
||||
0 & 0
|
||||
\end{pmatrix}
|
||||
=
|
||||
\frac{1}{2}
|
||||
\begin{pmatrix}
|
||||
1 & 0\\
|
||||
1 & 0
|
||||
\end{pmatrix}.
|
||||
$$
|
||||
|
||||
Since
|
||||
$$
|
||||
P_Z(\{1\})P_X(\{1\}) \neq P_X(\{1\})P_Z(\{1\}),
|
||||
$$
|
||||
the projections do not commute.
|
||||
|
||||
Let $\rho$ be a density operator on $\mathbb C^2$, i.e.
|
||||
$$
|
||||
\rho \ge 0,
|
||||
\qquad
|
||||
\operatorname{Tr}(\rho)=1.
|
||||
$$
|
||||
|
||||
For a pure state $\ket{\psi}$, one has
|
||||
$$
|
||||
\rho = \ket{\psi}\bra{\psi}.
|
||||
$$
|
||||
|
||||
The probability that a measurement associated with a PVM $P$ yields an outcome in a Borel set $A$ is
|
||||
$$
|
||||
\mathbb P(A) = \operatorname{Tr}(\rho\, P(A)).
|
||||
$$
|
||||
|
||||
For example, let
|
||||
$$
|
||||
\rho = \ket{0}\langle 0|
|
||||
=
|
||||
\begin{pmatrix}
|
||||
1 & 0\\
|
||||
0 & 0
|
||||
\end{pmatrix}.
|
||||
$$
|
||||
|
||||
Then
|
||||
$$
|
||||
\operatorname{Tr}\bigl(\rho\, P_Z(\{1\})\bigr) = 1,
|
||||
\qquad
|
||||
\operatorname{Tr}\bigl(\rho\, P_X(\{1\})\bigr) = \frac{1}{2}.
|
||||
$$
|
||||
|
||||
\end{examples}
|
||||
|
||||
\begin{defn}
|
||||
\label{defn:measurement}
|
||||
@@ -572,14 +752,14 @@ When operators commute, we recover classical probability measures.
|
||||
A measurement (observation) of a system prepared in a given state produces an outcome $x$, $x$ is a physical event that is a subset of the set of all possible outcomes. For each $x$, we associate a measurement operator $M_x$ on $\mathscr{H}$.
|
||||
|
||||
Given the initial state (pure state, unit vector) $u$, the probability of measurement outcome $x$ is given by:
|
||||
\[
|
||||
$$
|
||||
p(x)=\|M_xu\|^2
|
||||
\]
|
||||
$$
|
||||
|
||||
Note that to make sense of this definition, the collection of measurement operators $\{M_x\}$ must satisfy the completeness requirement:
|
||||
\[
|
||||
$$
|
||||
1=\sum_{x\in X} p(x)=\sum_{x\in X}\|M_xu\|^2=\sum_{x\in X}\langle M_xu,M_xu\rangle=\langle u,(\sum_{x\in X}M_x^*M_x)u\rangle
|
||||
\]
|
||||
$$
|
||||
So $\sum_{x\in X}M_x^*M_x=I$.
|
||||
|
||||
\end{defn}
|
||||
|
||||
Binary file not shown.
@@ -505,10 +505,7 @@ Then we have bound for Lipschitz constant $\eta$ of the map $S(\varphi_A): \math
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
The proof use lagrange multiplier method to find the maximum of the gradient of $S(\varphi_A)$.
|
||||
%
|
||||
TODO: use lagrange multiplier method to find the maximum of the gradient of $S(\varphi_A)$.
|
||||
%
|
||||
Consider the Lipschitz constant of the function $g:A\otimes B\to \R$ defined as $g(\varphi)=H(M(\varphi_A))$, where $M:A\otimes B\to \mathcal{P}(A)$ is the complete von Neumann measurement and $H: \mathcal{P}(A)\otimes \mathcal{P}(B)\to \R$ is the Shannon entropy.
|
||||
\end{proof}
|
||||
|
||||
From Levy's lemma, we have
|
||||
|
||||
Reference in New Issue
Block a user