update test

This commit is contained in:
Trance-0
2026-02-08 11:09:11 -06:00
parent b6c98dc198
commit f408befd11
5 changed files with 248 additions and 21 deletions

View File

@@ -505,10 +505,7 @@ Then we have bound for Lipschitz constant $\eta$ of the map $S(\varphi_A): \math
\end{lemma}
\begin{proof}
The proof use lagrange multiplier method to find the maximum of the gradient of $S(\varphi_A)$.
%
TODO: use lagrange multiplier method to find the maximum of the gradient of $S(\varphi_A)$.
%
Consider the Lipschitz constant of the function $g:A\otimes B\to \R$ defined as $g(\varphi)=H(M(\varphi_A))$, where $M:A\otimes B\to \mathcal{P}(A)$ is the complete von Neumann measurement and $H: \mathcal{P}(A)\otimes \mathcal{P}(B)\to \R$ is the Shannon entropy.
\end{proof}
From Levy's lemma, we have