update test
This commit is contained in:
@@ -505,10 +505,7 @@ Then we have bound for Lipschitz constant $\eta$ of the map $S(\varphi_A): \math
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
The proof use lagrange multiplier method to find the maximum of the gradient of $S(\varphi_A)$.
|
||||
%
|
||||
TODO: use lagrange multiplier method to find the maximum of the gradient of $S(\varphi_A)$.
|
||||
%
|
||||
Consider the Lipschitz constant of the function $g:A\otimes B\to \R$ defined as $g(\varphi)=H(M(\varphi_A))$, where $M:A\otimes B\to \mathcal{P}(A)$ is the complete von Neumann measurement and $H: \mathcal{P}(A)\otimes \mathcal{P}(B)\to \R$ is the Shannon entropy.
|
||||
\end{proof}
|
||||
|
||||
From Levy's lemma, we have
|
||||
|
||||
Reference in New Issue
Block a user