updates
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
106
content/Math4302/Math4302_L5.md
Normal file
106
content/Math4302/Math4302_L5.md
Normal file
@@ -0,0 +1,106 @@
|
||||
# Math4302 Modern Algebra (Lecture 5)
|
||||
|
||||
## Groups
|
||||
|
||||
### Subgroups
|
||||
|
||||
A subset $H\subseteq G$ is a subgroup of $G$ if
|
||||
|
||||
- $e\in H$
|
||||
- $\forall a,b\in H, a b\in H$
|
||||
- $a\in H\implies a^{-1}\in H$
|
||||
|
||||
_$H$ with $*$ is a group_
|
||||
|
||||
We denote as $H\leq G$.
|
||||
|
||||
<details>
|
||||
<summary>Example</summary>
|
||||
|
||||
For an arbitrary group $(G,*)$,
|
||||
|
||||
$(\{e\},*)$ and $(G,*)$ are always subgroups.
|
||||
|
||||
---
|
||||
|
||||
$(\mathbb{Z},+)$ is a subgroup of $(\mathbb{R},+)$.
|
||||
|
||||
---
|
||||
|
||||
Non-example:
|
||||
|
||||
$(\mathbb{Z}_+,+)$ is not a subgroup of $(\mathbb{Z},+)$.
|
||||
|
||||
---
|
||||
|
||||
Subgroup of $\mathbb{Z}_4$:
|
||||
|
||||
$(\{0,1,2,3\},+)$ (if $1\in H$, $3\in H$)
|
||||
|
||||
$(\{0,2\},+)$
|
||||
|
||||
$(\{0\},+)$
|
||||
|
||||
---
|
||||
|
||||
Subgroup of $\mathbb{Z}_5$:
|
||||
|
||||
$(\{0,1,2,3,4\},+)$
|
||||
|
||||
$(\{0\},+)$
|
||||
|
||||
_Cyclic group with prime order has only two subgroups_
|
||||
|
||||
---
|
||||
|
||||
Let $D_n$ denote the group of symmetries of a regular $n$-gon. (keep adjacent points pairs).
|
||||
|
||||
$$
|
||||
D_n=\{\sigma\in S_n\mid i,j\text{ are adjacent } \iff \sigma(i),\sigma(j)\text{ are adjacent }\}
|
||||
$$
|
||||
|
||||
$$
|
||||
\begin{pmatrix}
|
||||
1&2&3&4\\
|
||||
2&3&1&4
|
||||
\end{pmatrix}\notin D_4
|
||||
$$
|
||||
|
||||
$D_4$ has order $8$ and $S_4$ has order $24$.
|
||||
|
||||
$|D_n|=2n$. ($n$ option to rotation, $n$ option to reflection. For $\sigma(1)$ we have $n$ option, $\sigma(2)$ has 2 option where the remaining only has 1 option.)
|
||||
|
||||
Since $1-4$ is not adjacent in such permutation.
|
||||
|
||||
$D_n\leq S_n$ ($S_n$ is the symmetric group of $n$ elements).
|
||||
|
||||
</details>
|
||||
|
||||
#### Lemma of subgroups
|
||||
|
||||
If $H\subseteq G$ is a non-empty subset of a group $G$.
|
||||
|
||||
then ($H$ is a subgroup of $G$) if and only if ($a,b\in H\implies ab^-1\in H$).
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
If $H$ is subgroup, then $e\in H$, so $H$ is non-empty and if $a,b\in H$, then $b^{-1}\in H$, so $ab^{-1}\in H$.
|
||||
|
||||
---
|
||||
|
||||
If $H$ has the given property, then $H$ is non-empty and if $a,b\in H$, then $ab^-1\in H$, so
|
||||
|
||||
- There is some $a,a\in H$, $aa^{-1}\in H$, so $e\in H$.
|
||||
- If $b\in H$, then $e\in H$, so $eb^{-1}\in H$, so $b^{-1}\in H$.
|
||||
- If $b,c\in H$, then $c^{-1}$, so $bc^{-1}^{-1}\in H$, so $bc\in H$.
|
||||
|
||||
</details>
|
||||
|
||||
#### Cyclic group
|
||||
|
||||
$G$ is cyclic if $G$ is a subgroup generated by $a\in G$. (may be infinite)
|
||||
|
||||
$\mathbb{Z}_n\leq D_n\leq S_n$.
|
||||
|
||||
Cyclic group is always abelian.
|
||||
Reference in New Issue
Block a user