Merge branch 'main' of https://github.com/Trance-0/NoteNextra
This commit is contained in:
204
content/CSE510/CSE510_L12.md
Normal file
204
content/CSE510/CSE510_L12.md
Normal file
@@ -0,0 +1,204 @@
|
||||
# CSE510 Deep Reinforcement Learning (Lecture 12)
|
||||
|
||||
## Policy Gradient Theorem
|
||||
|
||||
For any differentiable policy $\pi_\theta(s,a)$, for any o the policy objective functions $J=J_1, J_{avR}$ or $\frac{1}{1-\gamma} J_{avV}$
|
||||
|
||||
The policy gradient is
|
||||
|
||||
$$
|
||||
\nabla_{\theta}J(\theta)=\mathbb{E}_{\pi_{\theta}}\left[\nabla_\theta \log \pi_\theta(s,a)Q^{\pi_\theta}(s,a)\right]
|
||||
$$
|
||||
|
||||
## Policy Gradient Methods
|
||||
|
||||
Advantages of Policy-Based RL
|
||||
|
||||
Advantages:
|
||||
|
||||
- Better convergence properties
|
||||
- Effective in high-dimensional or continuous action spaces
|
||||
- Can learn stochastic policies
|
||||
|
||||
Disadvantages:
|
||||
|
||||
- Typically converge to a local rather than global optimum
|
||||
- Evaluating a policy is typically inefficient and high variance
|
||||
|
||||
### Anchor-Critic Methods
|
||||
|
||||
#### Q Actor-Critic
|
||||
|
||||
Reducing Variance Using a Critic
|
||||
|
||||
Monte-Carlo Policy Gradient still has high variance.
|
||||
|
||||
We use a critic to estimate the action-value function $Q_w(s,a)\approx Q^{\pi_\theta}(s,a)$.
|
||||
|
||||
Anchor-critic algorithms maintain two sets of parameters:
|
||||
|
||||
Critic: updates action-value function parameters $w$
|
||||
|
||||
Actor: updates policy parameters $\theta$, in direction suggested by the critic.
|
||||
|
||||
Actor-critic algorithms follow an approximate policy gradient:
|
||||
|
||||
$$
|
||||
\nabla_\theta J(\theta) \approx \mathbb{E}_{\pi_{\theta}}\left[\nabla_\theta \log \pi_\theta(s,a)Q_w(s,a)\right]
|
||||
$$
|
||||
$$
|
||||
\Delta \theta = \alpha \nabla_\theta \log \pi_\theta(s,a)Q_w(s,a)
|
||||
$$
|
||||
|
||||
Action-Value Actor-Critic
|
||||
|
||||
- Simple actor-critic algorithm based on action-value critic
|
||||
- Using linear value function approximation $Q_w(s,a)=\phi(s,a)^T w$
|
||||
|
||||
Critic: updates $w$ by linear $TD(0)$
|
||||
Actor: updates $\theta$ by policy gradient
|
||||
|
||||
```python
|
||||
def Q_actor-critic(states,theta):
|
||||
actions=sample_actions(a,pi_theta)
|
||||
for i in range(num_steps):
|
||||
reward=sample_rewards(actions,states)
|
||||
transition=sample_transition(actions,states)
|
||||
new_actions=sample_action(transition,theta)
|
||||
delta=sample_reward+gamma*Q_w(transition, new_actions)-Q_w(states, actions)
|
||||
theta=theta+alpha*nabla_theta*log(pi_theta(states, actions))*Q_w(states, actions)
|
||||
w=w+beta*delta*phi(states, actions)
|
||||
a=new_actions
|
||||
s=transition
|
||||
```
|
||||
|
||||
#### Advantage Actor-Critic
|
||||
|
||||
Reducing variance using a baseline
|
||||
|
||||
- We subtract a baseline function $B(s)$ form the policy gradient
|
||||
- This can reduce the variance without changing expectation
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\mathbb{E}_{\pi_\theta}\left[\nabla_\theta\log \pi_\theta(s,a)B(s)]&=\sum_{s\in S}d^{\pi_\theta}(s)\sum_{a\in A}\nabla_{\theta}\pi_\theta(s,a)B(s)\\
|
||||
&=\sum_{s\in S}d^{\pi_\theta}B(s)\nabla_\theta\sum_{a\in A}\pi_\theta(s,a)\\
|
||||
&=0
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
A good baseline is the state value function $B(s)=V^{\pi_\theta}(s)$
|
||||
|
||||
So we can rewrite the policy gradient using the advantage function $A^{\pi_\theta}(s,a)=Q^{\pi_\theta}(s,a)-V^{\pi_theta}(s)$
|
||||
|
||||
$$
|
||||
\nabla_\theta J(\theta)=\mathbb{E}\left[\nabla_\theta \log \pi_\theta(s,a) A^{\pi_theta}(s,a)\right]
|
||||
$$
|
||||
|
||||
##### Estimating the Advantage function
|
||||
|
||||
**Method 1:** direct estimation
|
||||
|
||||
> May increase the variance
|
||||
|
||||
The advantage function can significantly reduce variance of policy gradient
|
||||
|
||||
So the critic should really estimate the advantage function
|
||||
|
||||
For example, by estimating both $V^{\pi_theta}(s)$ and $Q^{\pi_theta}(s,a)$
|
||||
|
||||
Using two function approximators and two parameter vectors,
|
||||
|
||||
$$
|
||||
V_v(s)\approx V^{\pi_\theta}(s)\\
|
||||
Q_w(s,a)\approx Q^{\pi_\theta}(s,a)\\
|
||||
A(s,a)=Q_w(s,a)-V_v(s)
|
||||
$$
|
||||
|
||||
And updating both value functions by e.g. TD learning
|
||||
|
||||
**Method 2:** using the TD error
|
||||
|
||||
> We can prove that TD error is an unbiased estimation of the advantage function
|
||||
|
||||
For the true value function $V^{\pi_\theta}(s)$, the TD error $\delta^{\pi_\theta}$
|
||||
|
||||
$$
|
||||
\delta^{\pi_\theta} = r + \gamma V^{\pi_\theta}(s) - V^{\pi_\theta}(s)
|
||||
$$
|
||||
|
||||
is an unbiased estimate of the advantage function
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\mathbb{E}_{\pi_\theta}[\delta^{\pi_\theta}| s,a]&=\mathbb{E}_{\pi_\theta}[r + \gamma V^{\pi_\theta}(s') |s,a]-V^{\pi_\theta}(s)\\
|
||||
&=Q^{\pi_\theta}(s,a)-V^{\pi_\theta}(s)\\
|
||||
&=A^{\pi_\theta}(s,a)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
So we can use the TD error to compute the policy gradient
|
||||
|
||||
$$
|
||||
\Delta \theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) \delta^{\pi_\theta}]
|
||||
$$
|
||||
|
||||
In practice, we can use an approximate TD error $\delta_v=r+\gamma V_v(s')-V_v(s)$ to compute the policy gradient
|
||||
|
||||
### Summary of policy gradient algorithms
|
||||
|
||||
THe policy gradient has many equivalent forms.
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\nabla_\theta J(\theta) &= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) v_t] \text{ REINFORCE} \\
|
||||
&= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) Q_w(s,a)] \text{ Q Actor-Critic} \\
|
||||
&= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) A^{\pi_\theta}(s,a)] \text{ Advantage Actor-Critic} \\
|
||||
&= \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) \delta^{\pi_\theta}] \text{ TD Actor-Critic}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Each leads s stochastic gradient ascent algorithm.
|
||||
|
||||
Critic use policy evaluation to estimate the $Q^\pi(s,a)$ or $A^\pi(s,a)$ or $V^\pi(s)$.
|
||||
|
||||
## Compatible Function Approximation
|
||||
|
||||
If the following two conditions are satisfied:
|
||||
|
||||
1. Value function approximation is a compatible with the policy
|
||||
$$
|
||||
\nabla_w Q_w(s,a) = \nabla_\theta \log \pi_\theta(s,a)
|
||||
$$
|
||||
2. Value function parameters $w$ minimize the MSE
|
||||
$$
|
||||
\epsilon = \mathbb{E}_{\pi_\theta}[(Q^{\pi_\theta}(s,a)-Q_w(s,a))^2]
|
||||
$$
|
||||
Note $\epsilon$ need not be zero, just need to be minimized.
|
||||
|
||||
Then the policy gradient is exact
|
||||
|
||||
$$
|
||||
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) Q_w(s,a)]
|
||||
$$
|
||||
|
||||
Remember:
|
||||
|
||||
$$
|
||||
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s,a) Q^{\pi_\theta}(s,a)]
|
||||
$$
|
||||
|
||||
### Challenges with Policy Gradient Methods
|
||||
|
||||
- Data Inefficiency
|
||||
- On-policy method: for each new policy, we need to generate a completely new
|
||||
- trajectory
|
||||
- The data is thrown out after just one gradient update
|
||||
- As complex neural networks need many updates, this makes the training process very slow
|
||||
- Unstable update: step size is very important
|
||||
- If step size is too large:
|
||||
- Large step -> bad policy
|
||||
- Next batch is generated from current bad policy -> collect bad samples
|
||||
- Bad samples -> worse policy (compare to supervised learning: the correct label and data in the following batches may correct it)
|
||||
- If step size is too small: the learning process is slow
|
||||
|
||||
@@ -14,4 +14,5 @@ export default {
|
||||
CSE510_L9: "CSE510 Deep Reinforcement Learning (Lecture 9)",
|
||||
CSE510_L10: "CSE510 Deep Reinforcement Learning (Lecture 10)",
|
||||
CSE510_L11: "CSE510 Deep Reinforcement Learning (Lecture 11)",
|
||||
CSE510_L12: "CSE510 Deep Reinforcement Learning (Lecture 12)"
|
||||
}
|
||||
166
content/CSE5313/CSE5313_L11.md
Normal file
166
content/CSE5313/CSE5313_L11.md
Normal file
@@ -0,0 +1,166 @@
|
||||
# CSE5313 Coding and information theory for data science (Recitation 10)
|
||||
|
||||
## Question 5
|
||||
|
||||
Prove the minimum distance of Reed-Muller code $RM(r,m)$ is $2^{m-r}$.
|
||||
|
||||
$n=2^m$.
|
||||
|
||||
Recall that the definition of RM code is:
|
||||
|
||||
$$
|
||||
\operatorname{RM}(r,m)=\left\{(f(\alpha_1),\ldots,f(\alpha_2^m))|\alpha_i\in \mathbb{F}_2^m,\deg f\leq r\right\}
|
||||
$$
|
||||
|
||||
<details>
|
||||
<summary>Example of RM code</summary>
|
||||
|
||||
Let $r=0$, it is the repetition code.
|
||||
|
||||
$\dim \operatorname{RM}(r,m)=\sum_{i=0}^{r}\binom{m}{i}$.
|
||||
|
||||
Here $r=0$, so $\dim \operatorname{RM}(0,m)=1$.
|
||||
|
||||
So the minimum distance of $RM(0,m)$ is $2^{m-0}=n$.
|
||||
|
||||
---
|
||||
|
||||
Let $r=m$,
|
||||
|
||||
then $\dim \operatorname{RM}(r,m)=\sum_{i=0}^{r}\binom{m}{i}=2^m$. (binomial theorem)
|
||||
|
||||
So the generator matrix is $n\times n$
|
||||
|
||||
So the minimum distance of $RM(m,m)$ is $2^{m-m}=1$.
|
||||
</details>
|
||||
|
||||
Then we can do the induction on $r$.
|
||||
|
||||
Assume the minimum distance of $RM(r',m')$ is $2^{m'-r'}$ for all $0\leq r'\leq r$, $r'\leq m'<m-1$.
|
||||
|
||||
Then we need to show that the minimum distance of $RM(r,m)$ is $2^{m-r}$.
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Recall that the polynomial $p(x_1,x_2,\ldots,x_m)$ can be written as $p(x_1,x_2,\ldots,x_m)=\sum_{S\subseteq [m],|S|\leq r}f_s X_s$, where $f_s\in \mathbb{F}_2$, the monomial $X_s=\prod_{i\in S}x_i$.
|
||||
|
||||
Every monomial $f(x_1,x_2,\ldots,x_m)$ can be written as
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
p(x_1,x_2,\ldots,x_m)&=\sum_{S\subseteq [m],|S|\leq r}f_s X_s\\
|
||||
&=g(x_1,x_2,\ldots,x_{m-1})+x_m h(x_1,x_2,\ldots,x_{m-1})\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
So $g(x_1,x_2,\ldots,x_{m-1})$ has degree at most $r$ and does not contain $x_m$.
|
||||
|
||||
And $x_m h(x_1,x_2,\ldots,x_{m-1})$ has degree at most $r-1$ and contains $x_m$.
|
||||
|
||||
Note that the codeword of $RM(r,m)$ is the truth table of some monomial evaluated at all $2^m$ $\alpha_i\in \mathbb{F}_2^m$.
|
||||
|
||||
And the minimum distance of $RM(r,m)$ is the minimum hamming weight for linear code, which is the number of $\alpha_i$ such that $f(\alpha_i)=1$
|
||||
|
||||
Then we can defined the weight of $f$ to be all $\alpha_i$ such that $f(\alpha_i)=1$.
|
||||
|
||||
$$
|
||||
\operatorname{wt}(f)=\{\alpha_i|f(\alpha_i)=1\}
|
||||
$$
|
||||
|
||||
Note that $g(x_1,x_2,\ldots,x_{m-1})$ is a $RM(r,m-1)$ and $h(x_1,x_2,\ldots,x_{m-1})$ is a $RM(r-1,m-1)$.
|
||||
|
||||
If $x_m=0$, then $f(\alpha_i)=g(\alpha_i)$.
|
||||
If $x_m=1$, then $f(\alpha_i)=g(\alpha_i)+h(\alpha_i)$.
|
||||
|
||||
So $\operatorname{wt}(f)=\operatorname{wt}(g)\cup\operatorname{wt}(g+h)$.
|
||||
|
||||
Note that $\operatorname{wt}(g+h)$ is the number of $\alpha_i$ such that $g(\alpha_i)+h(\alpha_i)=1$, which is `XOR` in binary field.
|
||||
|
||||
So $\operatorname{wt}(g+h)=(\operatorname{wt}(g)\setminus\operatorname{wt}(h))\cup (\operatorname{wt}(h)\setminus\operatorname{wt}(g))$.
|
||||
|
||||
So
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
|\operatorname{wt}(f)|&=|\operatorname{wt}(g)|+|\operatorname{wt}(g+h)|\\
|
||||
&=|\operatorname{wt}(g)|+|\operatorname{wt}(g)\setminus\operatorname{wt}(h)|+|\operatorname{wt}(h)\setminus\operatorname{wt}(g)|\\
|
||||
&=|\operatorname{wt}(h)|+2|\operatorname{wt}(h)\setminus\operatorname{wt}(g)|\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Note $h$ is in $\operatorname{RM}(r-1,m-1)$, so $|\operatorname{wt}(h)|=2^{m-r}$
|
||||
|
||||
</details>
|
||||
|
||||
## Theorem for Reed-Muller code
|
||||
|
||||
$$
|
||||
\operatorname{RM}(r,m)^\perp=\operatorname{RM}(m-r-1,m)
|
||||
$$
|
||||
|
||||
Let $\mathcal{C}=[n,k,d]_q$.
|
||||
|
||||
The dual code of $\mathcal{C}$ is $\mathcal{C}^\perp=\{x\in \mathbb{F}^n_q|xc^T=0\text{ for all }c\in \mathcal{C}\}$.
|
||||
|
||||
<details>
|
||||
<summary>Example</summary>
|
||||
|
||||
$\operatorname{RM}(0,m)^\perp=\operatorname{RM}(m-1,m)$.
|
||||
|
||||
and $\operatorname{RM}(0,m)$ is the repetition code.
|
||||
|
||||
which is the dual of the parity code $\operatorname{RM}(m-1,m)$.
|
||||
|
||||
</details>
|
||||
|
||||
### Lemma for sum of binary product
|
||||
|
||||
For $A\subseteq [m]=\{1,2,\ldots,m\}$, let $X^A=\prod_{i\in A}x_i$, we can defined the inner product $\langle X^A,X^B\rangle=\sum_{x\in \{0,1\}^m}\prod_{i\in A}x_i\prod_{i\in B}x_i=\sum_{x\in \{0,1\}^m}\prod_{i\in A\cup B}x_i$.
|
||||
|
||||
So $\langle X^A,X^B\rangle=\begin{cases}
|
||||
1 & \text{if }A\cup B=[m]\\
|
||||
0 & \text{otherwise}
|
||||
\end{cases}$
|
||||
|
||||
because $\prod_{i\in A\cup B}x_i=1$ if every coordinate in $A\cup B$ is 1.
|
||||
|
||||
So the number of such $x\in \{0,1\}^m$ is $2^{m-|A\cup B|}$.
|
||||
|
||||
This implies that $\langle X^A,X^B\rangle=1$ if and only if $m-|A\cup B|=0$.
|
||||
|
||||
Recall that $\operatorname{RM}(r,m)$ is the evaluation of $f=\sum_{B\subseteq [m],|B|\leq r}\beta X^B$ at all $\beta_i\in \{0,1\}^m$.
|
||||
|
||||
$\operatorname{RM}(m-r-1,m)$ is the evaluation of $h=\sum_{A\subseteq [m],|A|\leq m-r-1}\alpha X^A$ at all $\alpha_i \in \{0,1\}^m$.
|
||||
|
||||
By linearity of inner product, we have
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\langle f,h\rangle&=\langle \sum_{B\subseteq [m],|B|\leq r}\beta X^B,\sum_{A\subseteq [m],|A|\leq m-r-1}\alpha X^A\rangle\\
|
||||
&=\sum_{B\subseteq [m],|B|\leq r}\sum_{A\subseteq [m],|A|\leq m-r-1}\beta\alpha\langle X^B,X^A\rangle\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Because $|A\cup B|\leq |A|+|B|\leq m-r-1+r=m-1$.
|
||||
|
||||
So $\langle X^B,X^A\rangle=0$ since $m-1<m$
|
||||
|
||||
So $\langle f,h\rangle=0$.
|
||||
|
||||
<details>
|
||||
<summary>Proof for the theorem</summary>
|
||||
|
||||
Recall that the dual code of $\operatorname{RM}(r,m)^\perp=\{x\in \mathbb{F}_2^m|xc^T=0\text{ for all }c\in \operatorname{RM}(r,m)\}$.
|
||||
|
||||
So $\operatorname{RM}(m-r-1,m)\subseteq \operatorname{RM}(r,m)^\perp$.
|
||||
|
||||
So the last step is the dimension check.
|
||||
|
||||
Since $\dim \operatorname{RM}(r,m)=\sum_{i=0}^{r}\binom{m}{i}$ and the dimension of the dual code is $2^m-\dim \operatorname{RM}(r,m)=\sum_{i=0}^{m}\binom{m}{i}-\sum_{i=0}^{r}\binom{m}{i}=\sum_{i=r+1}^{m}\binom{m}{i}$.
|
||||
|
||||
Since $\binom{m}{i}=\binom{m}{m-i}$, we have $\sum_{i=r+1}^{m}\binom{m}{i}=\sum_{i=r+1}^{m}\binom{m}{m-i}=\sum_{i=0}^{m-r-1}\binom{m}{i}$.
|
||||
|
||||
This is exactly the dimension of $\operatorname{RM}(m-r-1,m)$.
|
||||
|
||||
</details>
|
||||
@@ -13,4 +13,5 @@ export default {
|
||||
CSE5313_L8: "CSE5313 Coding and information theory for data science (Lecture 8)",
|
||||
CSE5313_L9: "CSE5313 Coding and information theory for data science (Lecture 9)",
|
||||
CSE5313_L10: "CSE5313 Coding and information theory for data science (Recitation 10)",
|
||||
CSE5313_L11: "CSE5313 Coding and information theory for data science (Recitation 11)",
|
||||
}
|
||||
@@ -1,4 +1,4 @@
|
||||
# Exam 3 Review session
|
||||
# Math 4111 Exam 3 review
|
||||
|
||||
## Relations between series and topology (compactness, closure, etc.)
|
||||
|
||||
|
||||
@@ -12,10 +12,10 @@ Topics include:
|
||||
|
||||
The course is taught by [Alan Chang](https://math.wustl.edu/pQEDle/alan-chang).
|
||||
|
||||
It is easy in my semester perhaps, it is the first course I got 3 perfect scores in exams. (Unfortunately, I did not get the extra credit for the third midterm exam.)
|
||||
|
||||
<!--
|
||||
|
||||
It is easy in my semester perhaps, it is the first course I got 3 perfect scores in exams. (Unfortunately, I did not get the extra credit for the third midterm exam.)
|
||||
|
||||
## Midterms stats
|
||||
|
||||
Our semester is way more easier than the previous ones. The previous ones got median scores of 25.
|
||||
|
||||
87
content/Math4201/Math4201_L17.md
Normal file
87
content/Math4201/Math4201_L17.md
Normal file
@@ -0,0 +1,87 @@
|
||||
# Math4201 Topology I (Lecture 17)
|
||||
|
||||
## Quotient topology
|
||||
|
||||
How can we define topologies on the space obtained points in a topological space?
|
||||
|
||||
### Quotient map
|
||||
|
||||
Let $(X,\mathcal{T})$ be a topological space. $X^*$ is a set and $q:X\to X^*$ is a surjective map.
|
||||
|
||||
The quotient topology on $X^*$ is defined as follows:
|
||||
|
||||
$$
|
||||
\mathcal{T}^* = \{U\subseteq X^*\mid q^{-1}(U)\in \mathcal{T}\}
|
||||
$$
|
||||
|
||||
$U\subseteq X^*$ is open if and only if $q^{-1}(U)$ is open in $X$.
|
||||
|
||||
In particular, $q$ is continuous map.
|
||||
|
||||
#### Definition of quotient map
|
||||
|
||||
$q:X\to X^*$ defined above is called a **quotient map**.
|
||||
|
||||
#### Definition of quotient space
|
||||
|
||||
$(X^*,\mathcal{T}^*)$ is called the **quotient space** of $X$ by $q$.
|
||||
|
||||
### Typical way of constructing a surjective map
|
||||
|
||||
#### Equivalence relation
|
||||
|
||||
$\sim$ is a subset of $X\times X$ satisfying:
|
||||
|
||||
- reflexive: $\forall x\in X, x\sim x$
|
||||
- symmetric: $\forall x,y\in X, x\sim y\implies y\sim x$
|
||||
- transitive: $\forall x,y,z\in X, x\sim y\text{ and } y\sim z\implies x\sim z$
|
||||
|
||||
#### Equivalence classes
|
||||
|
||||
Check equivalence relation.
|
||||
|
||||
For $x\in X$, the equivalence class of $x$ is denoted as $[x]\coloneqq \{y\in X\mid y\sim x\}$.
|
||||
|
||||
$X^*$ is the set of all equivalence classes on $X$.
|
||||
|
||||
$q:X\to X^*$ is defined as $q(x)=[x]$ will be a surjective map.
|
||||
|
||||
<details>
|
||||
<summary>Example of surjective maps and their quotient spaces</summary>
|
||||
|
||||
Let $X=\mathbb{R}^2$ and $(s,t)\sim (s',t')$ if and only if $s-s'$ and $t-t'$ are both integers.
|
||||
|
||||
This space as a topological space is homeomorphic to the torus.
|
||||
|
||||
---
|
||||
|
||||
Let $X=\{(s,t)\in \mathbb{R}^2\mid s^2+t^2\leq 1\}$ and $(s,t)\sim (s',t')$ if and only if $s^2+t^2$ and $s'^2+t'^2$. with subspace topology as a subspace of $\mathbb{R}^2$.
|
||||
|
||||
This space as a topological space is homeomorphic to the spherical shell $S^2$.
|
||||
|
||||
</details>
|
||||
|
||||
We will show that the quotient topology is a topology on $X^*$.
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We need to show that the quotient topology is a topology on $X^*$.
|
||||
|
||||
1. $\emptyset, X^*$ are open in $X^*$.
|
||||
|
||||
$\emptyset, X^*$ are open in $X^*$ because $q^{-1}(\emptyset)=q^{-1}(X^*)=\emptyset$ and $q^{-1}(X^*)=X$ are open in $X$.
|
||||
|
||||
2. $\mathcal{T}^*$ is closed with respect to arbitrary unions.
|
||||
|
||||
$$
|
||||
q^{-1}(\bigcup_{\alpha \in I} U_\alpha)=\bigcup_{\alpha \in I} q^{-1}(U_\alpha)
|
||||
$$
|
||||
|
||||
3. $\mathcal{T}^*$ is closed with respect to finite intersections.
|
||||
|
||||
$$
|
||||
q^{-1}(\bigcap_{\alpha \in I} U_\alpha)=\bigcap_{\alpha \in I} q^{-1}(U_\alpha)
|
||||
$$
|
||||
|
||||
</details>
|
||||
115
content/Math4201/Math4201_L18.md
Normal file
115
content/Math4201/Math4201_L18.md
Normal file
@@ -0,0 +1,115 @@
|
||||
# Math 4201 Topology (Lecture 18)
|
||||
|
||||
## Quotient topology
|
||||
|
||||
Let $(X,\mathcal{T})$ be a topological space and $X^*$ be a set, $q:X\to X^*$ is a surjective map. The quotient topology on $X^*$:
|
||||
|
||||
$U\subseteq X^*$ is open $\iff q^{-1}(U)$ is open in $X$.
|
||||
|
||||
Equivalently,
|
||||
|
||||
$Z\subseteq X^*$ is closed $\iff q^{-1}(Z)$ is closed in $X$.
|
||||
|
||||
### Open maps
|
||||
|
||||
Let $(X,\mathcal{T})$ and $(Y,\mathcal{T}')$ be two topological spaces
|
||||
|
||||
Let $f:X\to Y$ is a quotient map if and only if $f$ is surjective and
|
||||
|
||||
$U\subseteq Y$ is open $\iff f^{-1}(U)$ is open
|
||||
|
||||
or equivalently
|
||||
|
||||
$Z\subseteq Y$ is closed $\iff f^{-1}(Z)$ is closed.
|
||||
|
||||
#### Definition of open map
|
||||
|
||||
Let $X\to Y$ be **continuous**. We say $f$ is open if for any $V\subseteq X$ be open, $f(V)$ is open in $Y$.
|
||||
|
||||
Let $X\to Y$ be **continuous**. We say $f$ is closed if for any $V\subseteq X$ be closed, $f(V)$ is closed in $Y$.
|
||||
|
||||
$$
|
||||
ff^{-1}(U)=U\text{ if }f \text{ is surjective}=U\cap f(X)
|
||||
$$
|
||||
|
||||
<details>
|
||||
<summary>Examples of open maps</summary>
|
||||
|
||||
Let $X,Y$ be topological spaces. Define the projection map $\pi_X:X\times Y\to X$, $\pi_X(x,y)=x$.
|
||||
|
||||
This is a surjective continuous map $(Y\neq \phi)$
|
||||
|
||||
This map is open. If $U\subseteq X$ is open and $V\subseteq Y$ is open, then $U\times V$ is open in $X\times Y$ and such open sets form a basis.
|
||||
|
||||
$\pi_X(U\times V)=\begin{cases}
|
||||
U&\text{ if }V\neq \emptyset\\
|
||||
\emptyset &\text{ if }V=\emptyset
|
||||
\end{cases}$
|
||||
|
||||
In particular, image of any such open set is open. Since any open $W\subseteq X\times Y$ is a union of such open sets.
|
||||
|
||||
$W=\bigcup_{\alpha\in I}U_\alpha\times V\alpha$
|
||||
|
||||
$\pi_X(W)=\pi_X(\bigcup_{\alpha\in I}U_\alpha\times V_\alpha)=\bigcup_{\alpha\in I}\pi_X(U_\alpha\times V_\alpha)=\bigcup_{\alpha\in I}U_\alpha$
|
||||
|
||||
is open in $X$.
|
||||
|
||||
However, $\pi_X$ is not necessarily a closed map.
|
||||
|
||||
Let $X=Y=\mathbb{R}$ and $X\times Y=\mathbb{R}^2$
|
||||
|
||||
$Z\subseteq \mathbb{R}^2=\{(x,y)\in\mathbb{R}^2|x\neq 0, y=\frac{1}{x}\}$ is a closed set in $\mathbb{R}^2$
|
||||
|
||||
$\pi_X(Z)=\mathbb{R}\setminus \{0\}$ is not closed.
|
||||
|
||||
---
|
||||
|
||||
Let $X=[0,1]\cup [2,3]$, $Y=[0,2]$ with subspace topology on $\mathbb{R}$
|
||||
|
||||
Let $f:X\to Y$ be defined as:
|
||||
|
||||
$$
|
||||
f(x)=\begin{cases}
|
||||
x& \text{ if } x\in [0,1]\\
|
||||
x-1& \text{ if }x\in [2,3]
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
$f$ is continuous and surjective, $f$ is closed $Z\subseteq [0,1]\cup [2,3]=Z_1\cup Z_2$, $Z_1\subseteq [0,1],Z_2\subseteq [2,3]$ is closed, $f(Z)=f(Z_1)\cup f(Z_2)$ is closed in $X$.
|
||||
|
||||
But $f$ is not open. Take $U=[0,1]\subseteq X$, $f=[0,1]\subseteq [0,2]$ is not open because of the point $1$.
|
||||
|
||||
> In general, and closed surjective map is a quotient map. In particular, this is an example of a closed surjective quotient map which is not open.
|
||||
|
||||
</details>
|
||||
|
||||
Let $f$ be a surjective open map. Then $f$ is a quotient map:
|
||||
|
||||
$U\subseteq Y$ is open and $f$ is continuous, $\implies f^{-1}(U)\subseteq X$ is open
|
||||
|
||||
$f^{-1}(U)\subseteq X$ is open and $f$ is surjective and open, $\implies f(f^{-1}(U))=U$ is open.
|
||||
|
||||
#### Proposition of continuous and open maps
|
||||
|
||||
If $f$ is a continuous bijection, then $f$ is open. if and only if $f^{-1}$ is continuous.
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
To show $f^{-1}$ is continuous, we have to show for $U\subseteq X$ open. $(f^{-1})^{-1}(U)=f(U)\subseteq Y$ is open.
|
||||
|
||||
This is the same thing as saying that $f$ is open.
|
||||
|
||||
</details>
|
||||
|
||||
Let $f$ be a quotient map $f: X \to Y$, and $g$ be a continuous map $g:X\to Z$.
|
||||
|
||||
We want to find $\hat{g}$ such that $g=\hat{g}\circ f$.
|
||||
|
||||
If $x_1,x_2\in X$, such that $f(x_1)=f(x_2)$ and $g(x_1)\neq g(x_2)$, then we cannot find $\hat{g}$.
|
||||
|
||||
#### Proposition
|
||||
|
||||
Let $f$ and $g$ be as above. Moreover, for any $y\in Y$, all the points in $f^{-1}(y)$ are mapped to a single point by $g$. Then there is a unique continuous map $\hat{g}$ such that $g=\hat{g}\circ f$.
|
||||
|
||||
Continue next week.
|
||||
@@ -19,4 +19,5 @@ export default {
|
||||
Math4201_L14: "Topology I (Lecture 14)",
|
||||
Math4201_L15: "Topology I (Lecture 15)",
|
||||
Math4201_L16: "Topology I (Lecture 16)",
|
||||
Math4201_L17: "Topology I (Lecture 17)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user