Update Math4121_L12.md

This commit is contained in:
Trance-0
2025-02-10 15:19:11 -06:00
parent 6a258e3462
commit 0b1ea591c1

View File

@@ -96,4 +96,44 @@ Define $\epsilon_n=\sup_{x\in[a,b]}|f_n(x)-f(x)|$.
By uniform convergence, $\epsilon_n\to 0$ as $n\to\infty$.
CONTINUE HERE
$$
f_n(x)-\epsilon_n\leq f(x)\leq f_n(x)+\epsilon_n
$$
$$
\int_a^b f_n-\epsilon_nd\alpha\leq\overline{\int_a^b}fd\alpha\leq\int_a^bf_n+\epsilon_nd\alpha
$$
$$
\int_a^b f_n-\epsilon_n d\alpha\leq\underline{\int_a^b}fd\alpha\leq\int_a^b f_n+\epsilon_n d\alpha
$$
So,
$$
0\leq\overline{\int_a^b}fd\alpha-\underline{\int_a^b}fd\alpha\leq\int_a^b \epsilon_n d\alpha+\int_a^b \epsilon_n d\alpha=2\epsilon_n[\alpha(b)-\alpha(a)]
$$
So $f\in\mathscr{R}(\alpha)$ and
$$
\int_a^b fd\alpha\leq \int_a^b f_n d\alpha+\int_a^b \epsilon_n d\alpha\leq \int_a^b fd\alpha+2\epsilon_n d\alpha
$$
So,
$$
\int_a^b fd\alpha-\int_a^b \epsilon_n d\alpha\leq \int_a^b f_n d\alpha\leq \int_a^b fd\alpha+\int_a^b \epsilon_n d\alpha
$$
Since $\int_a^b \epsilon_n d\alpha\to 0$ as $n\to\infty$, by the squeeze theorem, we have
by the squeeze theorem, we have
$$
\lim_{n\to\infty}\int_a^b f_nd\alpha=\int_a^b fd\alpha
$$
_Key is that $\int_a^b (f-f_n)d\alpha\leq \sup_{x\in[a,b]}|f-f_n|(\alpha(b)-\alpha(a))$_