Update Math4121_L12.md
This commit is contained in:
@@ -96,4 +96,44 @@ Define $\epsilon_n=\sup_{x\in[a,b]}|f_n(x)-f(x)|$.
|
||||
|
||||
By uniform convergence, $\epsilon_n\to 0$ as $n\to\infty$.
|
||||
|
||||
CONTINUE HERE
|
||||
$$
|
||||
f_n(x)-\epsilon_n\leq f(x)\leq f_n(x)+\epsilon_n
|
||||
$$
|
||||
|
||||
$$
|
||||
\int_a^b f_n-\epsilon_nd\alpha\leq\overline{\int_a^b}fd\alpha\leq\int_a^bf_n+\epsilon_nd\alpha
|
||||
$$
|
||||
|
||||
|
||||
$$
|
||||
\int_a^b f_n-\epsilon_n d\alpha\leq\underline{\int_a^b}fd\alpha\leq\int_a^b f_n+\epsilon_n d\alpha
|
||||
$$
|
||||
|
||||
So,
|
||||
|
||||
$$
|
||||
0\leq\overline{\int_a^b}fd\alpha-\underline{\int_a^b}fd\alpha\leq\int_a^b \epsilon_n d\alpha+\int_a^b \epsilon_n d\alpha=2\epsilon_n[\alpha(b)-\alpha(a)]
|
||||
$$
|
||||
|
||||
So $f\in\mathscr{R}(\alpha)$ and
|
||||
|
||||
$$
|
||||
\int_a^b fd\alpha\leq \int_a^b f_n d\alpha+\int_a^b \epsilon_n d\alpha\leq \int_a^b fd\alpha+2\epsilon_n d\alpha
|
||||
$$
|
||||
|
||||
So,
|
||||
|
||||
$$
|
||||
\int_a^b fd\alpha-\int_a^b \epsilon_n d\alpha\leq \int_a^b f_n d\alpha\leq \int_a^b fd\alpha+\int_a^b \epsilon_n d\alpha
|
||||
$$
|
||||
|
||||
Since $\int_a^b \epsilon_n d\alpha\to 0$ as $n\to\infty$, by the squeeze theorem, we have
|
||||
|
||||
by the squeeze theorem, we have
|
||||
|
||||
$$
|
||||
\lim_{n\to\infty}\int_a^b f_nd\alpha=\int_a^b fd\alpha
|
||||
$$
|
||||
|
||||
_Key is that $\int_a^b (f-f_n)d\alpha\leq \sup_{x\in[a,b]}|f-f_n|(\alpha(b)-\alpha(a))$_
|
||||
|
||||
|
||||
Reference in New Issue
Block a user