updates
This commit is contained in:
@@ -267,11 +267,9 @@ Hamming distance is a metric.
|
||||
|
||||
### Level of error handling
|
||||
|
||||
error detection
|
||||
|
||||
erasure correction
|
||||
|
||||
error correction
|
||||
- error detection
|
||||
- erasure correction
|
||||
- error correction
|
||||
|
||||
Erasure: replacement of an entry by $*\not\in F$.
|
||||
|
||||
@@ -283,11 +281,27 @@ Example: If $d_H(\mathcal{C})=d$.
|
||||
|
||||
Theorem: If $d_H(\mathcal{C})=d$, then there exists $f:F^n\to \mathcal{C}\cap \{\text{"error detected"}\}$. that detects every patter of $\leq d-1$ errors correctly.
|
||||
|
||||
\* track lost *\
|
||||
- That is, we can identify if the channel introduced at most $d-1$ errors.
|
||||
- No decoding is needed.
|
||||
|
||||
Idea:
|
||||
|
||||
Since $d_H(\mathcal{C})=d$, one needs $\geq d$ errors to cause "confusion$.
|
||||
Since $d_H(\mathcal{C})=d$, one needs $\geq d$ errors to cause "confusion".
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
The function
|
||||
$$
|
||||
f(y)=\begin{cases}
|
||||
y\text{ if }y\in \mathcal{C}\\
|
||||
\text{"error detected"} & \text{otherwise}
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
will only fails if there are $\geq d$ errors.
|
||||
|
||||
</details>
|
||||
|
||||
#### Erasure correction
|
||||
|
||||
@@ -295,7 +309,11 @@ Theorem: If $d_H(\mathcal{C})=d$, then there exists $f:\{F^n\cup \{*\}\}\to \mat
|
||||
|
||||
Idea:
|
||||
|
||||
\* track lost *\
|
||||
Suppose $d=4$.
|
||||
|
||||
If $4$ erasures occurred, there might be two possible codewords $c,c'\in \mathcal{C}$.
|
||||
|
||||
If $\leq 3$ erasures occurred, there is only one possible codeword $c\in \mathcal{C}$.
|
||||
|
||||
#### Error correction
|
||||
|
||||
|
||||
356
content/CSE5313/Exam_reviews/CSE5313_E1.md
Normal file
356
content/CSE5313/Exam_reviews/CSE5313_E1.md
Normal file
@@ -0,0 +1,356 @@
|
||||
# CSE 5313 Exam 1 review
|
||||
|
||||
## Basic math
|
||||
|
||||
```python
|
||||
class PrimeField:
|
||||
def __init__(self, p: int, value: int = 0):
|
||||
if not utils.prime(p):
|
||||
raise ValueError("p must be a prime number")
|
||||
if value >= p or value < 0:
|
||||
raise ValueError("value must be integers in the range [0, p)")
|
||||
self.p = p
|
||||
self.value = value
|
||||
|
||||
def field_check(func):
|
||||
def wrapper(self: 'PrimeField', other: 'PrimeField') -> 'PrimeField':
|
||||
if self.p != other.p:
|
||||
raise ValueError("Fields must have the same prime modulus")
|
||||
return func(self, other)
|
||||
return wrapper
|
||||
|
||||
def additive_inverse(self) -> 'PrimeField':
|
||||
return PrimeField(self.p, self.p - self.value)
|
||||
|
||||
def multiplicative_inverse(self) -> 'PrimeField':
|
||||
# done by Fermat's little theorem
|
||||
return PrimeField(self.p, pow(self.value, self.p - 2, self.p))
|
||||
|
||||
def next_value(self) -> 'PrimeField':
|
||||
return self + PrimeField(self.p, 1)
|
||||
|
||||
@field_check
|
||||
def __add__(self, other: 'PrimeField') -> 'PrimeField':
|
||||
return PrimeField(self.p, (self.value + other.value) % self.p)
|
||||
|
||||
@field_check
|
||||
def __sub__(self, other: 'PrimeField') -> 'PrimeField':
|
||||
return PrimeField(self.p, (self.value - other.value) % self.p)
|
||||
|
||||
@field_check
|
||||
def __mul__(self, other: 'PrimeField') -> 'PrimeField':
|
||||
return PrimeField(self.p, (self.value * other.value) % self.p)
|
||||
|
||||
@field_check
|
||||
def __truediv__(self, other: 'PrimeField') -> 'PrimeField':
|
||||
return PrimeField(self.p, (self.value * other.multiplicative_inverse().value)%self.p)
|
||||
|
||||
def __pow__(self, other: int) -> 'PrimeField':
|
||||
# no field check for power operation
|
||||
return PrimeField(self.p, pow(self.value, other, self.p))
|
||||
|
||||
@field_check
|
||||
def __eq__(self, other: 'PrimeField') -> bool:
|
||||
return self.value == other.value
|
||||
|
||||
@field_check
|
||||
def __ne__(self, other: 'PrimeField') -> bool:
|
||||
return self.value != other.value
|
||||
|
||||
@field_check
|
||||
def __lt__(self, other: 'PrimeField') -> bool:
|
||||
return self.value < other.value
|
||||
|
||||
@field_check
|
||||
def __le__(self, other: 'PrimeField') -> bool:
|
||||
return self.value <= other.value
|
||||
|
||||
@field_check
|
||||
def __gt__(self, other: 'PrimeField') -> bool:
|
||||
return self.value > other.value
|
||||
|
||||
@field_check
|
||||
def __ge__(self, other: 'PrimeField') -> bool:
|
||||
return self.value >= other.value
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"PrimeField({self.p}, {self.value})"
|
||||
```
|
||||
|
||||
For field extension.
|
||||
|
||||
```python
|
||||
class Polynomial():
|
||||
# strict constructor
|
||||
def __init__(self, p: int, coefficients: list[PrimeField]=[]):
|
||||
if len(coefficients) == 0:
|
||||
# no empty list is allowed
|
||||
coefficients = [PrimeField(p, 0)]
|
||||
if not utils.prime(p):
|
||||
raise ValueError("p must be a prime number")
|
||||
self.p = p
|
||||
for coefficient in coefficients:
|
||||
if not isinstance(coefficient, PrimeField) or coefficient.p != p:
|
||||
raise ValueError("coefficients must be in the same field")
|
||||
self.coefficients = coefficients
|
||||
self.remove_leading_zero_coefficients()
|
||||
|
||||
# lazy constructor
|
||||
@classmethod
|
||||
def from_integers(cls, p: int, coefficients: list[int]) -> 'Polynomial':
|
||||
# coefficients test
|
||||
for coefficient in coefficients:
|
||||
if 0 > coefficient or coefficient >= p:
|
||||
raise ValueError("coefficients must be integers in the range [0, p)")
|
||||
return cls(p, [PrimeField(p, coefficient) for coefficient in coefficients])
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.coefficients)
|
||||
|
||||
def degree(self) -> int:
|
||||
return len(self.coefficients) - 1
|
||||
|
||||
def evaluate(self, x: PrimeField) -> PrimeField:
|
||||
if x.p != self.p:
|
||||
raise ValueError("x must be in the same field as the polynomial")
|
||||
return sum([(x ** i) * coefficient for i, coefficient in enumerate(self.coefficients)], PrimeField(self.p, 0))
|
||||
|
||||
def padding_coefficients(self, degree: int) -> None:
|
||||
if degree < self.degree():
|
||||
raise ValueError("degree must be greater than or equal to the current degree")
|
||||
self.coefficients += [PrimeField(self.p, 0) for _ in range(degree - self.degree())]
|
||||
|
||||
def remove_leading_zero_coefficients(self) -> None:
|
||||
while self.degree() > 0 and self.coefficients[self.degree()].value == 0:
|
||||
self.coefficients.pop()
|
||||
|
||||
def field_check(func):
|
||||
def wrapper(self: 'Polynomial', other: 'Polynomial') -> 'Polynomial':
|
||||
if self.p != other.p:
|
||||
raise ValueError("Fields must have the same prime modulus")
|
||||
return func(self, other)
|
||||
return wrapper
|
||||
|
||||
def is_constant(self) -> bool:
|
||||
return self.degree() == 0
|
||||
|
||||
def next_value(self) -> 'Polynomial':
|
||||
# function enumerate all possible polynomials, degree may increase by 1
|
||||
new_coefficients = self.coefficients.copy()
|
||||
# do list addition
|
||||
pt=0
|
||||
new_coefficients[pt] = new_coefficients[pt].next_value()
|
||||
while pt < self.degree() and new_coefficients[pt] == PrimeField(self.p, 0):
|
||||
pt += 1
|
||||
new_coefficients[pt] = new_coefficients[pt].next_value()
|
||||
if pt == self.degree():
|
||||
new_coefficients.append(PrimeField(self.p, 1))
|
||||
return Polynomial(self.p, new_coefficients)
|
||||
|
||||
def is_irreducible(self) -> bool:
|
||||
# brute force check all possible divisors
|
||||
if self.is_constant():
|
||||
return False
|
||||
# start from first non-constant coefficient
|
||||
divisor = self.from_integers(self.p, [0,1])
|
||||
while divisor.degree() < self.degree():
|
||||
# debug
|
||||
# print(f"{self}, enumerate divisor: {divisor.as_integers()}")
|
||||
if self % divisor == self.from_integers(self.p, [0]):
|
||||
# debug
|
||||
# print(f"divisor: {divisor}, self: {self}")
|
||||
return False
|
||||
divisor = divisor.next_value()
|
||||
return True
|
||||
|
||||
@field_check
|
||||
def __add__(self, other: 'Polynomial') -> 'Polynomial':
|
||||
padding_degree = max(self.degree(), other.degree())
|
||||
self.padding_coefficients(padding_degree)
|
||||
other.padding_coefficients(padding_degree)
|
||||
new_coefficients = [self.coefficients[i] + other.coefficients[i] for i in range(padding_degree + 1)]
|
||||
return Polynomial(self.p, new_coefficients)
|
||||
|
||||
@field_check
|
||||
def __sub__(self, other: 'Polynomial') -> 'Polynomial':
|
||||
padding_degree = max(self.degree(), other.degree())
|
||||
self.padding_coefficients(padding_degree)
|
||||
other.padding_coefficients(padding_degree)
|
||||
new_coefficients = [self.coefficients[i] - other.coefficients[i] for i in range(padding_degree + 1)]
|
||||
return Polynomial(self.p, new_coefficients)
|
||||
|
||||
@field_check
|
||||
def __mul__(self, other: 'Polynomial') -> 'Polynomial':
|
||||
new_coefficients = [PrimeField(self.p, 0) for _ in range(self.degree() + other.degree() + 1)]
|
||||
for i in range(self.degree() + 1):
|
||||
for j in range(other.degree() + 1):
|
||||
new_coefficients[i + j] += self.coefficients[i] * other.coefficients[j]
|
||||
return Polynomial(self.p, new_coefficients)
|
||||
|
||||
def __long_division__(self, other: 'Polynomial') -> 'Polynomial':
|
||||
if self.degree() < other.degree():
|
||||
return self.from_integers(self.p, [0]), self
|
||||
quotient = self.from_integers(self.p, [0])
|
||||
remainder = self
|
||||
while remainder.degree() != 0 and remainder.degree() >= other.degree():
|
||||
# debug
|
||||
# print(f"remainder: {remainder}, remainder degree: {remainder.degree()}, other: {other}, other degree: {other.degree()}")
|
||||
# reduce to primitive operation
|
||||
division_result = (remainder.coefficients[remainder.degree()] / other.coefficients[other.degree()]).value
|
||||
division_polynomial = self.from_integers(self.p,[0]* (remainder.degree() - other.degree()) + [division_result])
|
||||
quotient += division_polynomial
|
||||
# degree automatically adjusted
|
||||
remainder = remainder - (division_polynomial * other)
|
||||
return quotient, remainder
|
||||
|
||||
@field_check
|
||||
def __truediv__(self, other: 'Polynomial') -> 'Polynomial':
|
||||
return Polynomial(self.p, self.__long_division__(other)[0].coefficients)
|
||||
|
||||
@field_check
|
||||
def __mod__(self, other: 'Polynomial') -> 'Polynomial':
|
||||
return Polynomial(self.p, self.__long_division__(other)[1].coefficients)
|
||||
|
||||
def __pow__(self, other: int) -> 'Polynomial':
|
||||
# you many need better algorithm to speed up this operation
|
||||
if other == 0:
|
||||
return Polynomial(self.p, [PrimeField(self.p, 1)])
|
||||
if other == 1:
|
||||
return self
|
||||
# fast exponentiation
|
||||
if other % 2 == 0:
|
||||
return (self * self) ** (other // 2)
|
||||
return self * (self * self) ** ((other - 1) // 2)
|
||||
|
||||
@field_check
|
||||
def __eq__(self, other: 'Polynomial') -> bool:
|
||||
return self.degree() == other.degree() and all(self.coefficients[i] == other.coefficients[i] for i in range(self.degree() + 1))
|
||||
|
||||
@field_check
|
||||
def __ne__(self, other: 'Polynomial') -> bool:
|
||||
return self.degree() != other.degree() or any(self.coefficients[i] != other.coefficients[i] for i in range(self.degree() + 1))
|
||||
|
||||
def __str__(self) -> str:
|
||||
string_arr = [f"{coefficient.value}x^{i}" for i, coefficient in enumerate(self.coefficients) if coefficient.value != 0]
|
||||
return f"Polynomial over GF({self.p}): {' + '.join(string_arr)}"
|
||||
|
||||
def as_integers(self) -> list[int]:
|
||||
return [coefficient.value for coefficient in self.coefficients]
|
||||
|
||||
def as_number(self) -> int:
|
||||
return sum([coefficient.value * self.p ** i for i, coefficient in enumerate(self.coefficients)])
|
||||
```
|
||||
```python
|
||||
class FiniteField():
|
||||
def __init__(self, p: int, n: int = 1, value: Polynomial = None, irreducible_polynomial: Polynomial = None):
|
||||
# set default value to zero polynomial
|
||||
if value is None:
|
||||
value = Polynomial.from_integers(p, [0])
|
||||
if value.degree() >= n:
|
||||
raise ValueError("Value must be a polynomial of degree less than n")
|
||||
if not utils.prime(p):
|
||||
raise ValueError("p must be a prime number")
|
||||
if n<1:
|
||||
raise ValueError("n must be non-negative")
|
||||
# auto set irreducible polynomial
|
||||
if irreducible_polynomial is not None:
|
||||
if not irreducible_polynomial.is_irreducible():
|
||||
raise ValueError("Irreducible polynomial is not irreducible")
|
||||
else:
|
||||
irreducible_polynomial = Polynomial.from_integers(p, [0]*(n) + [1])
|
||||
while not irreducible_polynomial.is_irreducible():
|
||||
irreducible_polynomial = irreducible_polynomial.next_value()
|
||||
self.p = p
|
||||
self.n = n
|
||||
self.value = value
|
||||
self.irreducible_polynomial = irreducible_polynomial
|
||||
|
||||
@classmethod
|
||||
def from_integers(cls, p: int, n: int, coefficients: list[int], irreducible_polynomial: Polynomial = None) -> 'FiniteField':
|
||||
return cls(p, n, Polynomial.from_integers(p, coefficients), irreducible_polynomial)
|
||||
|
||||
def additive_inverse(self) -> 'FiniteField':
|
||||
coefficients = [-coefficient for coefficient in self.value.coefficients]
|
||||
return FiniteField(self.p, self.n, Polynomial(self.p, coefficients), self.irreducible_polynomial)
|
||||
|
||||
def multiplicative_inverse(self) -> 'FiniteField':
|
||||
# via Fermat's little theorem
|
||||
return FiniteField(self.p, self.n, self.value ** ((self.p**self.n) - 2) % self.irreducible_polynomial, self.irreducible_polynomial)
|
||||
|
||||
def get_subfield(self) -> list['FiniteField']:
|
||||
subfield = [
|
||||
FiniteField(self.p, self.n, Polynomial.from_integers(self.p, [0]), self.irreducible_polynomial),
|
||||
FiniteField(self.p, self.n, Polynomial.from_integers(self.p, [1]), self.irreducible_polynomial)
|
||||
]
|
||||
current_element = self
|
||||
for _ in range(0, (self.p**self.n) - 1):
|
||||
if current_element in subfield:
|
||||
break
|
||||
subfield.append(current_element)
|
||||
current_element = current_element * self
|
||||
return subfield
|
||||
|
||||
def is_primitive(self) -> bool:
|
||||
# check if the element is a primitive element from definition
|
||||
subfield = self.get_subfield()
|
||||
return len(subfield) == (self.p**self.n)
|
||||
|
||||
def next_value(self) -> 'FiniteField':
|
||||
new_value = self.value.next_value()
|
||||
# do modulo over n
|
||||
while new_value.degree() >= self.n:
|
||||
new_value = new_value % self.irreducible_polynomial
|
||||
return FiniteField(self.p, self.n, new_value, self.irreducible_polynomial)
|
||||
|
||||
def field_property_check(func):
|
||||
def wrapper(self: 'FiniteField', other: 'FiniteField') -> 'FiniteField':
|
||||
if self.n != other.n:
|
||||
raise ValueError("Fields must have the same degree")
|
||||
if self.p != other.p:
|
||||
raise ValueError("Fields must have the same prime modulus")
|
||||
if self.irreducible_polynomial != other.irreducible_polynomial:
|
||||
raise ValueError("Irreducible polynomials must be the same")
|
||||
return func(self, other)
|
||||
return wrapper
|
||||
|
||||
@field_property_check
|
||||
def __add__(self, other: 'FiniteField') -> 'FiniteField':
|
||||
return FiniteField(self.p, self.n, (self.value + other.value)%self.irreducible_polynomial, self.irreducible_polynomial)
|
||||
|
||||
@field_property_check
|
||||
def __sub__(self, other: 'FiniteField') -> 'FiniteField':
|
||||
return FiniteField(self.p, self.n, (self.value + other.additive_inverse()).value%self.irreducible_polynomial, self.irreducible_polynomial)
|
||||
|
||||
@field_property_check
|
||||
def __mul__(self, other: 'FiniteField') -> 'FiniteField':
|
||||
return FiniteField(self.p, self.n, (self.value * other.value)%self.irreducible_polynomial, self.irreducible_polynomial)
|
||||
|
||||
@field_property_check
|
||||
def __truediv__(self, other: 'FiniteField') -> 'FiniteField':
|
||||
return FiniteField(self.p, self.n, (self.value * other.multiplicative_inverse()).value%self.irreducible_polynomial, self.irreducible_polynomial)
|
||||
|
||||
@field_property_check
|
||||
def __eq__(self, other: 'FiniteField') -> bool:
|
||||
return self.value == other.value
|
||||
|
||||
@field_property_check
|
||||
def __ne__(self, other: 'FiniteField') -> bool:
|
||||
return self.value != other.value
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"FiniteField over GF({self.p}) of degree {self.n}: {self.value}"
|
||||
|
||||
def as_vector(self) -> list[int]:
|
||||
return [coefficient.value for coefficient in self.value.coefficients]
|
||||
|
||||
def as_number(self) -> int:
|
||||
return self.value.as_number()
|
||||
|
||||
def as_polynomial(self) -> Polynomial:
|
||||
return self.value
|
||||
|
||||
```
|
||||
|
||||
## Linear codes
|
||||
|
||||
## Local recoverable codes
|
||||
@@ -3,6 +3,7 @@ export default {
|
||||
"---":{
|
||||
type: 'separator'
|
||||
},
|
||||
Exam_reviews: "Exam reviews",
|
||||
CSE5313_L1: "CSE5313 Coding and information theory for data science (Lecture 1)",
|
||||
CSE5313_L2: "CSE5313 Coding and information theory for data science (Lecture 2)",
|
||||
CSE5313_L3: "CSE5313 Coding and information theory for data science (Lecture 3)",
|
||||
|
||||
Reference in New Issue
Block a user