This commit is contained in:
Zheyuan Wu
2025-03-18 13:19:43 -05:00

View File

@@ -2,6 +2,213 @@
So everything we have learned so far is to extend the real line to the complex plane. So everything we have learned so far is to extend the real line to the complex plane.
## Chapter 0 Calculus on Real values
### Differentiation
Let $f,g$ be function on real line and $c$ be a real number.
$$
\frac{d}{dx}(f+g)=f'+g'
$$
$$
\frac{d}{dx}(cf)=cf'
$$
$$
\frac{d}{dx}(fg)=f'g+fg'
$$
$$
\frac{d}{dx}(f/g)=(f'g-fg')/g^2
$$
$$
\frac{d}{dx}(f\circ g)=(f'\circ g)\frac{d}{dx}g
$$
$$
\frac{d}{dx}x^n=nx^{n-1}
$$
$$
\frac{d}{dx}e^x=e^x
$$
$$
\frac{d}{dx}\ln x=\frac{1}{x}
$$
$$
\frac{d}{dx}\sin x=\cos x
$$
$$
\frac{d}{dx}\cos x=-\sin x
$$
$$
\frac{d}{dx}\tan x=\sec^2 x
$$
$$
\frac{d}{dx}\sec x=\sec x\tan x
$$
$$
\frac{d}{dx}\csc x=-\csc x\cot x
$$
$$
\frac{d}{dx}\sinh x=\cosh x
$$
$$
\frac{d}{dx}\cosh x=\sinh x
$$
$$
\frac{d}{dx}\tanh x=\operatorname{sech}^2 x
$$
$$
\frac{d}{dx}\operatorname{sech} x=-\operatorname{sech}x\tanh x
$$
$$
\frac{d}{dx}\operatorname{csch} x=-\operatorname{csch}x\coth x
$$
$$
\frac{d}{dx}\coth x=-\operatorname{csch}^2 x
$$
$$
\frac{d}{dx}\arcsin x=\frac{1}{\sqrt{1-x^2}}
$$
$$
\frac{d}{dx}\arccos x=-\frac{1}{\sqrt{1-x^2}}
$$
$$
\frac{d}{dx}\arctan x=\frac{1}{1+x^2}
$$
$$
\frac{d}{dx}\operatorname{arccot} x=-\frac{1}{1+x^2}
$$
$$
\frac{d}{dx}\operatorname{arcsec} x=\frac{1}{x\sqrt{x^2-1}}
$$
$$
\frac{d}{dx}\operatorname{arccsc} x=-\frac{1}{x\sqrt{x^2-1}}
$$
### Integration
Let $f,g$ be function on real line and $c$ be a real number.
$$
\int (f+g)dx=\int fdx+\int gdx
$$
$$
\int cfdx=c\int fdx
$$
$$
\int e^x dx=e^x
$$
$$
\int \ln x dx=x\ln x-x
$$
$$
\int \frac{1}{x} dx=\ln|x|
$$
$$
\int \sin x dx=-\cos x
$$
$$
\int \cos x dx=\sin x
$$
$$
\int \tan x dx=-\ln|\cos x|
$$
$$
\int \cot x dx=\ln|\sin x|
$$
$$
\int \sec x dx=\ln|\sec x+\tan x|
$$
$$
\int \csc x dx=\ln|\csc x-\cot x|
$$
$$
\int \sinh x dx=\cosh x
$$
$$
\int \cosh x dx=\sinh x
$$
$$
\int \tanh x dx=\ln|\cosh x|
$$
$$
\int \coth x dx=\ln|\sinh x|
$$
$$
\int \operatorname{sech} x dx=2\arctan(\tanh(x/2))
$$
$$
\int \operatorname{csch} x dx=\ln|\coth x-\operatorname{csch} x|
$$
$$
\int \operatorname{sech}^2 x dx=\tanh x
$$
$$
\int \operatorname{csch}^2 x dx=-\coth x
$$
$$
\int \frac{1}{1+x^2} dx=\arctan x
$$
$$
\int \frac{1}{x^2+1} dx=\arctan x
$$
$$
\int \frac{1}{x^2-1} dx=\frac{1}{2}\ln|\frac{x-1}{x+1}|
$$
$$
\int \frac{1}{x^2-a^2} dx=\frac{1}{2a}\ln|\frac{x-a}{x+a}|
$$
$$
\int \frac{1}{x^2+a^2} dx=\frac{1}{a}\arctan(\frac{x}{a})
$$
## Chapter 1 Complex Numbers ## Chapter 1 Complex Numbers
### Definition of complex numbers ### Definition of complex numbers
@@ -18,6 +225,14 @@ $$
(x_1 + y_1i) \cdot (x_2 + y_2i) = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i (x_1 + y_1i) \cdot (x_2 + y_2i) = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i
$$ $$
#### Modulus
The modulus of a complex number $z = x + yi$ is defined as
$$
|z| = \sqrt{x^2 + y^2}=|z\overline{z}|
$$
### De Moivre's Formula ### De Moivre's Formula
Every complex number $z$ can be written as $z = r(\cos \theta + i \sin \theta)$, where $r$ is the magnitude of $z$ and $\theta$ is the argument of $z$. Every complex number $z$ can be written as $z = r(\cos \theta + i \sin \theta)$, where $r$ is the magnitude of $z$ and $\theta$ is the argument of $z$.
@@ -121,6 +336,12 @@ $$
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
$$ $$
On the polar form, the Cauchy-Riemann equations are
$$
r\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}, \quad \frac{\partial u}{\partial \theta} = -r\frac{\partial v}{\partial r}
$$
### Holomorphic functions ### Holomorphic functions
A function $f$ is said to be holomorphic on an open subset $G$ of $\mathbb{C}$ if $f$ is differentiable at every point of $G$. A function $f$ is said to be holomorphic on an open subset $G$ of $\mathbb{C}$ if $f$ is differentiable at every point of $G$.
@@ -190,6 +411,21 @@ where $a,b,c,d$ are complex numbers and $ad-bc\neq 0$.
### Properties of linear fractional transformations ### Properties of linear fractional transformations
#### Matrix form
A linear fractional transformation can be written as a matrix multiplication:
$$
\phi(z) = \begin{bmatrix}
a & b\\
c & d\\
\end{bmatrix}
\begin{bmatrix}
z\\
1\\
\end{bmatrix}
$$
#### Conformality #### Conformality
A linear fractional transformation is conformal. A linear fractional transformation is conformal.
@@ -215,21 +451,99 @@ $$
So if $z_1,z_2,z_3$, $w_1,w_2,w_3$ are distinct points in the complex plane, then there exists a unique linear fractional transformation $\phi$ such that $\phi(z_i)=w_i$ for $i=1,2,3$. So if $z_1,z_2,z_3$, $w_1,w_2,w_3$ are distinct points in the complex plane, then there exists a unique linear fractional transformation $\phi$ such that $\phi(z_i)=w_i$ for $i=1,2,3$.
#### Inversion
#### Factorization #### Factorization
Every linear fractional transformation can be written as a composition of homothetic mappings, translations, inversions, and multiplications.
If $\phi(z)=\frac{az+b}{cz+d}$, then
$$
\phi(z) = \frac{b-ad/c}{cz+d}+\frac{a}{c}
$$
#### Clircle #### Clircle
A linear-fractional transformation maps circles and lines to circles and lines.
## Chapter 4 Elementary Functions ## Chapter 4 Elementary Functions
### Exponential function ### Exponential function
The exponential function is defined as
$$
e^z = \sum_{n=0}^\infty \frac{z^n}{n!}
$$
Let $z=x+iy$, then
$$
\begin{aligned}
e^z &= e^{x+iy}\\
&= e^x e^{iy}\\
&= e^x\sum_{n=0}^\infty \frac{(iy)^n}{n!}\\
&= e^x\sum_{n=0}^\infty \frac{(-1)^n y^{2n}}{(2n)!} + i \sum_{n=0}^\infty \frac{(-1)^n y^{2n+1}}{(2n+1)!}\\
&= e^x(\cos y + i\sin y)\\
\end{aligned}
$$
So we can rewrite the polar form of a complex number as
$$
z = r(\cos \theta + i\sin \theta) = re^{i\theta}
$$
#### $e^x$ is holomorphic
Let $f(z)=e^z$, then $u(x,y)=e^x\cos y$, $v(x,y)=e^x\sin y$.
$$
\frac{\partial u}{\partial x} = e^x\cos y = \frac{\partial v}{\partial y}\\
\frac{\partial u}{\partial y} = -e^x\sin y = -\frac{\partial v}{\partial x}
$$
### Trigonometric functions ### Trigonometric functions
$$
\sin z = \frac{e^{iz}-e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz}+e^{-iz}}{2}, \quad \tan z = \frac{\sin z}{\cos z}
$$
$$
\sec z = \frac{1}{\cos z}, \quad \csc z = \frac{1}{\sin z}, \quad \cot z = \frac{1}{\tan z}
$$
#### Hyperbolic functions
$$
\sinh z = \frac{e^z-e^{-z}}{2}, \quad \cosh z = \frac{e^z+e^{-z}}{2}, \quad \tanh z = \frac{\sinh z}{\cosh z}
$$
$$
\operatorname{sech} z = \frac{1}{\cosh z}, \quad \operatorname{csch} z = \frac{1}{\sinh z}, \quad \operatorname{coth} z = \frac{1}{\tanh z}
$$
### Logarithmic function ### Logarithmic function
The logarithmic function is defined as
$$
\ln z=\{w\in\mathbb{C}: e^w=z\}
$$
#### Properties of the logarithmic function
Let $z=x+iy$, then
$$
|e^z|=\sqrt{e^x(\cos y)^2+(\sin y)^2}=e^x
$$
So we have
$$
\log z = \ln |z| + i\arg z
$$
### Power function ### Power function
### Inverse trigonometric functions ### Inverse trigonometric functions
@@ -238,8 +552,21 @@ So if $z_1,z_2,z_3$, $w_1,w_2,w_3$ are distinct points in the complex plane, the
### Definition of power series ### Definition of power series
A power series is a series of the form
$$
\sum_{n=0}^\infty a_n (z-z_0)^n
$$
### Properties of power series ### Properties of power series
#### Geometric series
$$
\sum_{n=0}^\infty z^n = \frac{1}{1-z}, \quad |z|<1
$$
### Radius/Region of convergence ### Radius/Region of convergence
### Cauchy-Hadamard Theorem ### Cauchy-Hadamard Theorem