update
This commit is contained in:
@@ -72,6 +72,4 @@ ROI alignment:
|
||||
- Align the proposal to the feature map.
|
||||
- Align the proposal to the feature map.
|
||||
|
||||
Use bounding box regression to refine the proposal.
|
||||
|
||||
|
||||
Use bounding box regression to refine the proposal.
|
||||
31
pages/CSE559A/CSE559A_L15.md
Normal file
31
pages/CSE559A/CSE559A_L15.md
Normal file
@@ -0,0 +1,31 @@
|
||||
# CSE559A Lecture 15
|
||||
|
||||
## Continue on object detection
|
||||
|
||||
### Two strategies for object detection
|
||||
|
||||
#### R-CNN: Region proposals + CNN features
|
||||
|
||||

|
||||
|
||||
#### Fast R-CNN: CNN features + RoI pooling
|
||||
|
||||

|
||||
|
||||
Use bilinear interpolation to get the features of the proposal.
|
||||
|
||||
#### Region of interest pooling
|
||||
|
||||

|
||||
|
||||
Use backpropagation to get the gradient of the proposal.
|
||||
|
||||
### New materials
|
||||
|
||||
#### Faster R-CNN
|
||||
|
||||
Use one CNN to generate region proposals. And use another CNN to classify the proposals.
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -17,4 +17,5 @@ export default {
|
||||
CSE559A_L12: "Computer Vision (Lecture 12)",
|
||||
CSE559A_L13: "Computer Vision (Lecture 13)",
|
||||
CSE559A_L14: "Computer Vision (Lecture 14)",
|
||||
CSE559A_L15: "Computer Vision (Lecture 15)",
|
||||
}
|
||||
|
||||
@@ -2,8 +2,6 @@
|
||||
|
||||
## Continue on Arzela-Osgood Theorem
|
||||
|
||||
|
||||
|
||||
Proof:
|
||||
|
||||
Part 2: Control the integral on $\mathcal{U}$
|
||||
@@ -100,7 +98,7 @@ Part 2: If $f$ is pointwise discontinuous, then $\mathcal{D}$ is of first catego
|
||||
|
||||
Let $P_k=\{x\in [a,b]: w(f;x)\geq \frac{1}{k}\}$, $\mathcal{D}=\bigcup_{k=1}^\infty P_k$.
|
||||
|
||||
Need to show that each $P_k$ is nowhere dense. (under the assumption that $\mathcal{C)$ is dense).
|
||||
Need to show that each $P_k$ is nowhere dense. (under the assumption that $\mathcal{C}$ is dense).
|
||||
|
||||
Let $I\subseteq [a,b]$ so $\exists c\in \mathcal{C}\cap I$. So by definition of $w(f;c)$, $\exists J\subseteq I$ and $c\in J$ such that $w(f;J)\leq \frac{1}{k}$ so for all $x\in J$, $w(f;x)\leq \frac{1}{k}$. so $J\subseteq P_k=\emptyset$.
|
||||
|
||||
|
||||
@@ -1 +1,139 @@
|
||||
# Lecture 23
|
||||
# Math 4121 Lecture 23
|
||||
|
||||
## Chapter 5 Measure Theory
|
||||
|
||||
### Weierstrass idea
|
||||
|
||||
Define
|
||||
|
||||
$$
|
||||
S_f(x) = \{(x,y)\in \mathbb{R}^2: 0\leq y\leq f(x)\}
|
||||
$$
|
||||
|
||||
We take the outer content in $\mathbb{R}^2$ of $S_f(x)$ to be the area of the largest rectangle that can be inscribed in $S_f(x)$.
|
||||
|
||||
$$
|
||||
(w)\int_a^b f(x) dx = c_e(S_f(x))
|
||||
$$
|
||||
|
||||
We can generalize this to higher dimensions.
|
||||
|
||||
#### Definition volume of rectangle
|
||||
|
||||
Let $R=I_1\times I_2\times \cdots \times I_n\in \mathbb{R}^n$ be a rectangle.
|
||||
|
||||
The volume of $R$ is defined as
|
||||
|
||||
$$
|
||||
\text{vol}(R) = \prod_{i=1}^n \ell(I_i)
|
||||
$$
|
||||
|
||||
#### Definition of outer content
|
||||
|
||||
For $S\subseteq \mathbb{R}^n$, we define the outer content of $S$ as
|
||||
|
||||
$$
|
||||
c_e(S) = \inf_{\{R_j\}_{j=1}^N} \sum_{j=1}^N \text{vol}(R_j)
|
||||
$$
|
||||
|
||||
where $S\subseteq \bigcup_{j=1}^N R_j$ and $R_j$ are rectangles.
|
||||
|
||||
Note: $\overline{\int}f(x) dx=c_e(S_f(x))$
|
||||
|
||||
#### Definition of inner content
|
||||
|
||||
For $S\subseteq \mathbb{R}^n$, we define the inner content of $S$ as
|
||||
|
||||
$$
|
||||
c_i(S) = \sup_{\{R_j\}_{j=1}^N} \sum_{j=1}^N \text{vol}(R_j)
|
||||
$$
|
||||
|
||||
where $R_j$ are disjoint rectangles $\in \mathbb{R}^n$ and $\bigcup_{j=1}^N R_j\subseteq S$.
|
||||
|
||||
Note: $\underline{\int}f(x) dx=c_i(S_f(x))$
|
||||
|
||||
#### Definition of Jordan measurable set
|
||||
|
||||
A set $S\subseteq \mathbb{R}^n$ is said to be _Jordan measurable_ if $c_e(S)=c_i(S)$.
|
||||
|
||||
and we denote the common value **content** as $c_e(S)=c_i(S)=c(S)$.
|
||||
|
||||
#### Definition of interior of a set
|
||||
|
||||
The interior of a set $S\subseteq \mathbb{R}^n$ is defined as
|
||||
|
||||
$$
|
||||
S^\circ = \{x\in \mathbb{R}^n: B_\delta(x)\subseteq S \text{ for some } \delta > 0\}
|
||||
$$
|
||||
|
||||
_It is the largest open set contained in $S$._
|
||||
|
||||
#### Definition of closure of a set
|
||||
|
||||
The closure of a set $S\subseteq \mathbb{R}^n$ is defined as
|
||||
|
||||
$$
|
||||
\overline{S} = S\cup S'
|
||||
$$
|
||||
|
||||
or equivalently,
|
||||
|
||||
$$
|
||||
\overline{S} = \{x\in \mathbb{R}^n: B_\delta(x)\cap S\neq \emptyset \text{ for all } \delta > 0\}
|
||||
$$
|
||||
|
||||
where $S'$ is the set of all limit points of $S$.
|
||||
|
||||
_It is the smallest closed set containing $S$._
|
||||
|
||||
Homework problem: Complement of the closure of $S$ is the interior of the complement of $S$, i.e.,
|
||||
|
||||
$$
|
||||
(\overline{S})^c = (S^c)^\circ
|
||||
$$
|
||||
|
||||
#### Definition of boundary of a set
|
||||
|
||||
The boundary of a set $S\subseteq \mathbb{R}^n$ is defined as
|
||||
|
||||
$$
|
||||
\partial S = \overline{S}\setminus S^\circ
|
||||
$$
|
||||
|
||||
#### Proposition 5.1 (Criterion for Jordan measurability)
|
||||
|
||||
Let $S\subseteq \mathbb{R}^n$ be a bounded set. Then
|
||||
|
||||
$$
|
||||
c_e(S) = c_i(S)+c_e(\partial S)
|
||||
$$
|
||||
|
||||
So $S$ is Jordan measurable if and only if $c_e(\partial S)=0$.
|
||||
|
||||
Proof:
|
||||
|
||||
Let $\epsilon > 0$, and $\{R_j\}_{j=1}^N$ be an open cover of $\partial S$. such that $\sum_{j=1}^N \text{vol}(R_j) < c_e(\partial S)+\frac{\epsilon}{2}$.
|
||||
|
||||
We slightly enlarge each $R_j$ to $Q_j$ such that $R_j\subseteq Q_j$ and $\text{vol}(Q_j)\leq \text{vol}(R_j)+\frac{\epsilon}{2N}$.
|
||||
|
||||
and $dis(R_j,Q_j^c)>\delta > 0$
|
||||
|
||||
If we could construct such $\{Q_j\}_{j=N+1}^M$ disjoint and
|
||||
|
||||
$$
|
||||
\bigcup_{j=N+1}^M Q_j\subseteq S\subseteq \bigcup_{j=1}^M Q_j
|
||||
$$
|
||||
|
||||
then we have
|
||||
|
||||
$$
|
||||
c_e(S)\leq \sum_{j=1}^M \text{vol}(\partial S)+\epsilon +c_i(S)
|
||||
$$
|
||||
|
||||
We can do this by constructing a set of square with side length $\eta$. We claim:
|
||||
|
||||
If $\eta$ is small enough (depends on $\delta$), then $\mathcal{C}_\eta=\{Q\in K_\eta:Q\subset S\}$, $\mathcal{C}_\eta\cup \left(\bigcup_{j=1}^N Q_j\right)$ is a cover of $S$.
|
||||
|
||||
Suppose $\exists x\in S$ but not in $\mathcal{C}_\eta$. Then $x$ is closed to $\partial S$ so in some $Q_j$. (This proof is not rigorous, but you get the idea. Also not clear in book actually.)
|
||||
|
||||
EOP
|
||||
|
||||
@@ -34,7 +34,7 @@ Proof:
|
||||
|
||||
Let $z_0\in G$. There exists a neighborhood $\overline{B_r(z_0)}\subset G$ of $z_0$ such that $\left(f_n\right)_{n\in\mathbb{N}}$ converges uniformly on $\overline{B_r(z_0)}$.
|
||||
|
||||
Let $C_r=partial B_r(z_0)$.
|
||||
Let $C_r=\partial B_r(z_0)$.
|
||||
|
||||
By Cauchy integral formula, we have
|
||||
|
||||
@@ -42,7 +42,7 @@ $$
|
||||
f_n(z_0) = \frac{1}{2\pi i}\int_{C_r}\frac{f_n(\zeta)}{\zeta-z_0}d\zeta
|
||||
$$
|
||||
|
||||
$\forall z\in B_r(z_0)$, we have $\frac{f_n(w)}{w-\zeta}$ converges uniformly on $C_r$.
|
||||
$\forall z\in B_r(z_0)$, we have $\frac{f(w)}{w-\zeta}$ converges uniformly on $C_r$.
|
||||
|
||||
So $\lim_{n\to\infty}f_n(z_0) = f(z_0) = \frac{1}{2\pi i}\int_{C_r}\frac{f(w)}{w-z_0}dw$
|
||||
|
||||
|
||||
163
pages/Math416/Math416_L16.md
Normal file
163
pages/Math416/Math416_L16.md
Normal file
@@ -0,0 +1,163 @@
|
||||
# Math416 Lecture 16
|
||||
|
||||
## Answer checking for exam
|
||||
|
||||
### Q1
|
||||
|
||||
Cauchy riemann equations:
|
||||
|
||||
$$
|
||||
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}\quad\text{and}\quad\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
|
||||
$$
|
||||
|
||||
Liouville's Theorem:
|
||||
|
||||
Any non-constant entire function is unbounded.
|
||||
|
||||
So $\cos(z)$ is unbounded in $\mathbb{C}$.
|
||||
|
||||
$$
|
||||
\text{Log}(-e^2) = \ln|-e^2| + i\arg(-e^2) = -2 + \pi i
|
||||
$$
|
||||
|
||||
At any point $z_0\in \mathbb{C}\setminus\{0\}$, there is an open set $z_0\in U\subset \mathbb{C}$ and a branch of logarithm defined on $U$.
|
||||
|
||||
### Q2
|
||||
|
||||
Power series expansion
|
||||
|
||||
### Q3
|
||||
|
||||
limit superior
|
||||
|
||||
### Q4
|
||||
|
||||
Bound integral
|
||||
|
||||
### Q5
|
||||
|
||||
$f_n$ converges pointwise to $f$ on $U$ if $\forall z\in U$, $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n\geq N$, $|f_n(z)-f(z)| < \epsilon$.
|
||||
|
||||
$f_n$ converges uniformly to $f$ on $U$ if $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n\geq N$, $\forall z\in U$, $|f_n(z)-f(z)| < \epsilon$.
|
||||
|
||||
Show for $|z|<1$, $f_n(z)=z^n$ converges pointwise to $0$ but not uniformly to $0$.
|
||||
|
||||
(a) pointwise convergence:
|
||||
|
||||
$|z^n| = |z|^n < \epsilon$ if $n > \frac{\ln\epsilon}{\ln|z|}$.
|
||||
|
||||
(b) uniform convergence:
|
||||
|
||||
No matter how small $\epsilon$ is, there is always a $z$ s.t. $|z^n| > \epsilon$ for all $n$.
|
||||
|
||||
## Continue from last lecture
|
||||
|
||||
### Schwarz's Lemma
|
||||
|
||||
Let $f$ be an holomorphic function that maps the unit disk $D(0,1)$ to itself and $f(0)=0$. Then $|f(z)|\leq |z|$ for all $z\in D(0,1)$
|
||||
|
||||
#### Schwarz-Pick's Lemma
|
||||
|
||||
(see exercise 7.17.2)
|
||||
|
||||
Let $f$ be an holomorphic function that maps the unit disk $D(0,1)$ to itself. Then $\forall z,w\in D(0,1)$,
|
||||
|
||||
$$
|
||||
\left|\frac{f(z)-f(w)}{1-\overline{f(w)}f(z)}\right|\leq \left|\frac{z-w}{1-\overline{w}z}\right|
|
||||
$$
|
||||
|
||||
> Recall the Möbius map
|
||||
>
|
||||
> $$\phi_\alpha(z) = \frac{z-\alpha}{1-\overline{\alpha}z}$$
|
||||
>
|
||||
> is a homeomorphism of the unit disk.
|
||||
>
|
||||
> So we can use the Möbius to restate the Schwarz-Pick's Lemma as:
|
||||
>
|
||||
> $$|\phi_{f(w)}(f(z))|\leq |\phi_w(z)|$$
|
||||
|
||||
Suppose we defined $g=\phi_{f(w)}\circ f\circ \phi_{-w}$, then $g$ is a holomorphic function that maps the unit disk to itself and $g(0)=0$.
|
||||
|
||||
By Schwarz's Lemma, let $z\in D(0,1)$, $|g(z)|\leq |z|$.
|
||||
|
||||
$$
|
||||
|\phi_{f(w)}(f(\phi_{-w}(z)))|\leq |z|
|
||||
$$
|
||||
|
||||
Let $\zeta=\phi_{-w}(z)$, then $\zeta=\frac{z+w}{1+\overline{w}z}\in D(0,1)$, so $|\zeta|=\phi_w(z)$.
|
||||
|
||||
#### Extension of Schwarz-Pick's Lemma in hyperbolic metric
|
||||
|
||||
Suppose we defined the distance on $\mathbb{C}$ as $d(z,w)=|\frac{z-w}{1-\overline{w}z}|$.
|
||||
|
||||
We claim that this is a metric on $\mathbb{C}$. $\forall z,w,v\in \mathbb{C}$:
|
||||
|
||||
(a) $d(z,w)=0$ if and only if $z=w$ and $d(z,w)> 0$ otherwise.
|
||||
|
||||
(b) $d(z,w)=d(w,z)$.
|
||||
|
||||
(c) $d(z,w)\leq d(z,v)+d(v,w)$.
|
||||
|
||||
We call this metric the Pseudo hyperbolic metric.
|
||||
|
||||
> Hyperbolic metric:
|
||||
>
|
||||
> $$ \text{Hypdist}(z,w)=\tanh^{-1}(d(z,w))$$
|
||||
>
|
||||
> Where $d(z,w)=|\frac{z-w}{1-\overline{w}z}|$
|
||||
|
||||
So we can restate the Schwarz-Pick's Lemma as:
|
||||
|
||||
$$
|
||||
d(f(z),f(w))\leq d(z,w)
|
||||
$$
|
||||
|
||||
And in hyperbolic metric, it becomes:
|
||||
|
||||
$$
|
||||
\text{Hypdist}(f(z),f(w))\leq \text{Hypdist}(z,w)
|
||||
$$
|
||||
|
||||
Suppose the equality holds for Schwarz-Pick's Lemma, then $|g(z)|=\tau z$ where $|\tau|=1$.
|
||||
|
||||
Computation ignored here.
|
||||
|
||||
Then $f$ is a Möbius map that is automorphism of the unit disk.
|
||||
|
||||
### Existence of harmonic conjugate
|
||||
|
||||
Suppose $f=u+iv$ is holomorphic on a domain $U\subset \mathbb{C}$. Then $u=\text{Re}(f)$ is harmonic on $U$. That is $\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$.
|
||||
|
||||
#### Theorem 7.18
|
||||
|
||||
Let $u$ be a real harmonic function on a convex domain $G\subset \mathbb{C}$. Then there exists $g\in O(G)$ such that $\text{Re}(g)=u$. Moreover, $g$ is unique up to an additive imaginary constant.
|
||||
|
||||
Proof:
|
||||
|
||||
Existence next time.
|
||||
|
||||
Uniqueness:
|
||||
|
||||
Suppose $g,h\in O(G)$ s.t. $\text{Re}(g)=\text{Re}(h)=u$.
|
||||
|
||||
$\text{Re}g=u=\text{Re}h$ on $G$.
|
||||
|
||||
If we can show that $(g-h)'=0$ on $G$, then we win.
|
||||
|
||||
Let $g=u+iv$, $h=u+iw$.
|
||||
|
||||
By the Cauchy-Riemann equations,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{\partial}{\partial x}(g-h)&=\frac{\partial}{\partial x}i(v-w)\\
|
||||
&=i\left(\frac{\partial u}{\partial y}-\frac{\partial u}{\partial y}\right)\\
|
||||
&=0
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Suppose $G=\mathbb{C}\setminus\{0\}$, then $u=\ln|z|=\frac{1}{2}\ln(x^2+y^2)$, which is harmonic.
|
||||
|
||||
Continue next time.
|
||||
|
||||
|
||||
@@ -19,4 +19,5 @@ export default {
|
||||
Math416_L13: "Complex Variables (Lecture 13)",
|
||||
Math416_L14: "Complex Variables (Lecture 14)",
|
||||
Math416_L15: "Complex Variables (Lecture 15)",
|
||||
Math416_L16: "Complex Variables (Lecture 16)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user