updates
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
# Math4201 Lecture 10
|
||||
# Math4201 Topology I (Lecture 10)
|
||||
|
||||
## Continuity
|
||||
|
||||
@@ -6,7 +6,6 @@
|
||||
|
||||
Let $X,Y$ be topological spaces and $f:X\to Y$. For any $x\in X$ and any open neighborhood $V$ of $f(x)$ in $Y$, $f^{-1}(V)$ contains an open neighborhood of $x$ in $X$.
|
||||
|
||||
|
||||
#### Lemma for continuous functions
|
||||
|
||||
Let $f:X\to Y$ be a function, then:
|
||||
|
||||
Reference in New Issue
Block a user