updates
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
132
content/Math4202/Math4202_L11.md
Normal file
132
content/Math4202/Math4202_L11.md
Normal file
@@ -0,0 +1,132 @@
|
||||
# Math4201 Topology II (Lecture 11)
|
||||
|
||||
## Algebraic topology
|
||||
|
||||
### Fundamental group
|
||||
|
||||
The $*$ operation has the following properties:
|
||||
|
||||
#### Properties for the path product operation
|
||||
|
||||
Let $[f],[g]\in \Pi_1(X)$, for $[f]\in \Pi_1(X)$, let $s:\Pi_1(X)\to X, [f]\mapsto f(0)$ and $t:\Pi_1(X)\to X, [f]\mapsto f(1)$.
|
||||
|
||||
Note that $t([f])=s([g])$, $[f]*[g]=[f*g]\in \Pi_1(X)$.
|
||||
|
||||
This also satisfies the associativity. $([f]*[g])*[h]=[f]*([g]*[h])$.
|
||||
|
||||
We have left and right identity. $[f]*[e_{t(f)}]=[f], [e_{s(f)}]*[f]=[f]$.
|
||||
|
||||
We have inverse. $[f]*[\bar{x}]=[e_{s(f)}], [\bar{x}]*[f]=[e_{t(f)}]$
|
||||
|
||||
#### Definition for Groupoid
|
||||
|
||||
Let $f,g$ be paths where $g,f:[0,1]\to X$, and consider the function of all pathes in $G$, denoted as $\mathcal{G}$,
|
||||
|
||||
Set $t:\mathcal{G}\to X$ be the source map, for this case $t(f)=f(0)$, and $s:\mathcal{G}\to X$ be the target map, for this case $s(f)=f(1)$.
|
||||
|
||||
We define
|
||||
|
||||
$$
|
||||
\mathcal{G}^{(2)}=\{(f,g)\in \mathcal{G}\times \mathcal{G}|t(f)=s(g)\}
|
||||
$$
|
||||
|
||||
And we define the operation $*$ on $\mathcal{G}^{(2)}$ as the path product.
|
||||
|
||||
This satisfies the following properties:
|
||||
|
||||
- Associativity: $(f*g)*h=f*(g*h)$
|
||||
|
||||
Consider the function $\eta:X\to \mathcal{G}$, for this case $\eta(x)=e_{x}$.
|
||||
|
||||
- We have left and right identity: $\eta(t(f))*f=f, f*\eta(s(f))=f$
|
||||
|
||||
- Inverse: $\forall g\in \mathcal{G}, \exists g^{-1}\in \mathcal{G}, g*g^{-1}=\eta(s(g))$, $g^{-1}*g=\eta(t(g))$
|
||||
|
||||
#### Definition for loop
|
||||
|
||||
Let $x_0\in X$. A path starting and ending at $x_0$ is called a loop based at $x_0$.
|
||||
|
||||
#### Definition for the fundamental group
|
||||
|
||||
The fundamental group of $X$ at $x$ is defined to be
|
||||
|
||||
$$
|
||||
(\Pi_1(X,x),*)
|
||||
$$
|
||||
|
||||
where $*$ is the product operation, and $\Pi_1(X,x)$ is the set o homotopy classes of loops in $X$ based at $x$.
|
||||
|
||||
<details>
|
||||
<summary>Example of fundamental group</summary>
|
||||
|
||||
Consider $X=[0,1]$, with subspace topology from standard topology in $\mathbb{R}$.
|
||||
|
||||
$\Pi_1(X,0)=\{e\}$, (constant function at $0$) since we can build homotopy for all loops based at $0$ as follows $H(s,t)=(1-t)f(s)+t$.
|
||||
|
||||
And $\Pi_1(X,1)=\{e\}$, (constant function at $1$.)
|
||||
|
||||
---
|
||||
|
||||
Let $X=\{1,2\}$ with discrete topology.
|
||||
|
||||
$\Pi_1(X,1)=\{e\}$, (constant function at $1$.)
|
||||
|
||||
$\Pi_1(X,2)=\{e\}$, (constant function at $2$.)
|
||||
|
||||
---
|
||||
|
||||
Let $X=S^1$ be the circle.
|
||||
|
||||
$\Pi_1(X,1)=\mathbb{Z}$ (related to winding numbers, prove next week).
|
||||
|
||||
</details>
|
||||
|
||||
A natural question is, will the fundamental group depends on the basepoint $x$?
|
||||
|
||||
#### Definition for $\hat{\alpha}$
|
||||
|
||||
Let $\alpha$ be a path in $X$ from $x_0$ to $x_1$. $\alpha:[0,1]\to X$ such that $\alpha(0)=x_0$ and $\alpha(1)=x_1$. Define $\hat{\alpha}:\Pi_1(X,x_0)\to \Pi_1(X,x_1)$ as follows:
|
||||
|
||||
$$
|
||||
\hat{\alpha}(\beta)=[\bar{\alpha}]*[f]*[\alpha]
|
||||
$$
|
||||
|
||||
#### $\hat{\alpha}$ is a group homomorphism
|
||||
|
||||
$\hat{\alpha}$ is a group homomorphism between $(\Pi_1(X,x_0),*)$ and $(\Pi_1(X,x_1),*)$
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $f,g\in \Pi_1(X,x_0)$, then $\hat{\alpha}(f*g)=\hat{\alpha}(f)\hat{\alpha}(g)$
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\hat{\alpha}(f*g)&=[\bar{\alpha}]*[f]*[g]*[\alpha]\\
|
||||
&=[\bar{\alpha}]*[f]*[e_{x_0}]*[g]*[\alpha]\\
|
||||
&=[\bar{\alpha}]*[f]*[\alpha]*[\bar{\alpha}]*[g]*[\alpha]\\
|
||||
&=([\bar{\alpha}]*[f]*[\alpha])*([\bar{\alpha}]*[g]*[\alpha])\\
|
||||
&=(\hat{\alpha}(f))*(\hat{\alpha}(g))
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
---
|
||||
|
||||
Next, we will show that $\hat{\alpha}\circ \hat{\bar{\alpha}}([f])=[f]$, and $\hat{\bar{\alpha}}\circ \hat{\alpha}([f])=[f]$.
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\hat{\alpha}\circ \hat{\bar{\alpha}}([f])&=\hat{\alpha}([\bar{\alpha}]*[f]*[\alpha])\\
|
||||
&=[\alpha]*[\bar{\alpha}]*[f]*[\alpha]*[\bar{\alpha}]\\
|
||||
&=[e_{x_0}]*[f]*[e_{x_1}]\\
|
||||
&=[f]
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
The other case is the same
|
||||
|
||||
</details>
|
||||
|
||||
#### Corollary of fundamental group
|
||||
|
||||
If $X$ is path-connected and $x_0,x_1\in X$, then $\Pi_1(X,x_0)$ is isomorphic to $\Pi_1(X,x_1)$.
|
||||
@@ -13,4 +13,5 @@ export default {
|
||||
Math4202_L8: "Topology II (Lecture 8)",
|
||||
Math4202_L9: "Topology II (Lecture 9)",
|
||||
Math4202_L10: "Topology II (Lecture 10)",
|
||||
Math4202_L11: "Topology II (Lecture 11)",
|
||||
}
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Math4302 Modern Algebra (Lecture 9)
|
||||
# Math4302 Modern Algebra (Lecture 10)
|
||||
|
||||
## Groups
|
||||
|
||||
|
||||
1
content/Math4302/Math4302_L11.md
Normal file
1
content/Math4302/Math4302_L11.md
Normal file
@@ -0,0 +1 @@
|
||||
# Math4302 Modern Algebra (Lecture 11)
|
||||
@@ -13,4 +13,5 @@ export default {
|
||||
Math4302_L8: "Modern Algebra (Lecture 8)",
|
||||
Math4302_L9: "Modern Algebra (Lecture 9)",
|
||||
Math4302_L10: "Modern Algebra (Lecture 10)",
|
||||
Math4302_L11: "Modern Algebra (Lecture 11)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user