update and fix typo

This commit is contained in:
Trance-0
2025-02-18 12:28:22 -06:00
parent a7aa6b88d8
commit 271424a25b
4 changed files with 127 additions and 5 deletions

View File

@@ -40,7 +40,7 @@ EOP
### Complex Integral
#### Definition 4.1
#### Definition 6.1
If $\phi(t)$ is a complex function defined on $[a,b]$, then the integral of $\phi(t)$ over $[a,b]$ is defined as
@@ -48,7 +48,7 @@ $$
\int_a^b \phi(t) dt = \int_a^b \text{Re}\{\phi(t)\} dt + i\int_a^b \text{Im}\{\phi(t)\} dt
$$
#### Theorem 4.3 (Triangle Inequality)
#### Theorem 6.3 (Triangle Inequality)
If $\phi(t)$ is a complex function defined on $[a,b]$, then
@@ -74,7 +74,7 @@ Assume $\phi$ is continuous on $[a,b]$, the equality means $\lambda(t)\phi(t)$ i
EOP
#### Definition 4.4 Arc Length
#### Definition 6.4 Arc Length
Let $\gamma$ be a curve in the complex plane defined by $\gamma(t)=x(t)+iy(t)$, $t\in[a,b]$. The arc length of $\gamma$ is given by
@@ -117,7 +117,7 @@ $$
\int_{\Gamma} f(\zeta) d\zeta=\int_0^{2\pi} f(\gamma(t))\gamma'(t) dt=\int_0^{2\pi} \frac{1}{Re^{-it}}iRe^{it} dt=2\pi i
$$
#### Theorem 4.11 (Uniform Convergence)
#### Theorem 6.11 (Uniform Convergence)
If $f_n(z)$ converges uniformly to $f(z)$ on $\Gamma$, assume length of $\Gamma$ is finite, then
@@ -144,7 +144,7 @@ $$
EOP
#### Theorem 4.6 (Integral of derivative)
#### Theorem 6.6 (Integral of derivative)
Suppose $\Gamma$ is a closed curve, $\gamma:[a,b]\to\mathbb{C}$ and $\gamma(a)=\gamma(b)$.