update and fix typo
This commit is contained in:
@@ -40,7 +40,7 @@ EOP
|
||||
|
||||
### Complex Integral
|
||||
|
||||
#### Definition 4.1
|
||||
#### Definition 6.1
|
||||
|
||||
If $\phi(t)$ is a complex function defined on $[a,b]$, then the integral of $\phi(t)$ over $[a,b]$ is defined as
|
||||
|
||||
@@ -48,7 +48,7 @@ $$
|
||||
\int_a^b \phi(t) dt = \int_a^b \text{Re}\{\phi(t)\} dt + i\int_a^b \text{Im}\{\phi(t)\} dt
|
||||
$$
|
||||
|
||||
#### Theorem 4.3 (Triangle Inequality)
|
||||
#### Theorem 6.3 (Triangle Inequality)
|
||||
|
||||
If $\phi(t)$ is a complex function defined on $[a,b]$, then
|
||||
|
||||
@@ -74,7 +74,7 @@ Assume $\phi$ is continuous on $[a,b]$, the equality means $\lambda(t)\phi(t)$ i
|
||||
|
||||
EOP
|
||||
|
||||
#### Definition 4.4 Arc Length
|
||||
#### Definition 6.4 Arc Length
|
||||
|
||||
Let $\gamma$ be a curve in the complex plane defined by $\gamma(t)=x(t)+iy(t)$, $t\in[a,b]$. The arc length of $\gamma$ is given by
|
||||
|
||||
@@ -117,7 +117,7 @@ $$
|
||||
\int_{\Gamma} f(\zeta) d\zeta=\int_0^{2\pi} f(\gamma(t))\gamma'(t) dt=\int_0^{2\pi} \frac{1}{Re^{-it}}iRe^{it} dt=2\pi i
|
||||
$$
|
||||
|
||||
#### Theorem 4.11 (Uniform Convergence)
|
||||
#### Theorem 6.11 (Uniform Convergence)
|
||||
|
||||
If $f_n(z)$ converges uniformly to $f(z)$ on $\Gamma$, assume length of $\Gamma$ is finite, then
|
||||
|
||||
@@ -144,7 +144,7 @@ $$
|
||||
|
||||
EOP
|
||||
|
||||
#### Theorem 4.6 (Integral of derivative)
|
||||
#### Theorem 6.6 (Integral of derivative)
|
||||
|
||||
Suppose $\Gamma$ is a closed curve, $\gamma:[a,b]\to\mathbb{C}$ and $\gamma(a)=\gamma(b)$.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user