update
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
# Lecture 12
|
||||
# Math4121 Lecture 12
|
||||
|
||||
## Chapter 7: Uniform Convergence and Integrals
|
||||
|
||||
|
||||
@@ -2,9 +2,9 @@
|
||||
|
||||
## Recap
|
||||
|
||||
### Hankel developedn Riemann's integrabilty criterion.
|
||||
### Hankel developed Riemann's integrabilty criterion.
|
||||
|
||||
#### Definition
|
||||
#### Definition: Oscillation
|
||||
|
||||
Given an interval $I\subset[a,b]$, $f:[a,b]\to\mathbb{R}$ the oscillation of $f$ at $I$ is
|
||||
|
||||
@@ -12,8 +12,88 @@ $$
|
||||
\omega(f,I) = \sup_I f - \inf_I f
|
||||
$$
|
||||
|
||||
#### Theorem
|
||||
#### Theorem 2.5: Riemann's Integrability Criterion
|
||||
|
||||
A bounded function $f$ is Riemann integrable if and only if
|
||||
A bounded function $f$ is Riemann integrable if and only if for every $\sigma,\epsilon>0$ there exists a partition $P$ of $[a,b]$ such that
|
||||
|
||||
$$
|
||||
\sum_{i\in \mathcal{P}}\Delta x_i<\epsilon
|
||||
$$
|
||||
|
||||
where $\mathcal{P}=\{i:\omega(f,I_i)>\sigma\}$.
|
||||
|
||||
Proof as homework questions.
|
||||
|
||||
#### Corollary 2.4
|
||||
|
||||
For point $c\in[a,b]$, define the oscillation at $c$ as
|
||||
|
||||
$$
|
||||
\omega(f,c) = \inf_{c\in I}\omega(f,I)
|
||||
$$
|
||||
|
||||
Homework question 6: $f$ is continuous at $c$ if and only if $\omega(f,c)=0$.
|
||||
|
||||
So we can restate the previous theorem as:
|
||||
|
||||
Given $\sigma>0$, define $S_\sigma=\{c\in[a,b]:\omega(f,c)>\sigma\}$.
|
||||
|
||||
Restate the theorem as:
|
||||
|
||||
$f\in\mathscr{R}[a,b]$ if and only if for every $\sigma,\epsilon>0$ there exists intervals $I_1,I_2,\cdots,I_n$ such that $S_\sigma\subset\bigcup_{i=1}^{n}I_i$ and $\sum_{i=1}^{n}\ell(I_i)<\epsilon$. where $\ell(I)$ is the length of the interval $I$.
|
||||
|
||||
#### Definition: Outer content
|
||||
|
||||
Given a set $S$, a **finite cover** of $S$ is a collection of intervals $C=\{I_1,I_2,\cdots,I_n\}$ such that $S\subseteq\bigcup_{i=1}^{n}I_i$.
|
||||
|
||||
The length of the cover $C$ is $\ell(C)=\sum_{i=1}^{n}\ell(I_i)$.
|
||||
|
||||
The **outer content** of $S$ is
|
||||
|
||||
$$
|
||||
c_e(S) = \inf_{c\in C_s}\ell(C)
|
||||
$$
|
||||
|
||||
where $\C_s$ is the set of all finite covers of $S$.
|
||||
|
||||
Example:
|
||||
|
||||
$S=\{x_1,\ldots,x_n\}$, then $c_e(S)=0$.
|
||||
|
||||
- Let $I_i=(x_i-\frac{\epsilon}{2n},x_i+\frac{\epsilon}{2n})$, so $\sum_{i=1}^{n}\ell(I_i)=\epsilon$
|
||||
|
||||
$S=\{\frac{1}{n}\}_{n=1}^{\infty}$, then $c_e(S)=0$.
|
||||
|
||||
- In this case, we can only use finite cover, however, there is only one "accumulation point", so we can cover it with a single interval, and the remaining points can be covered by finite intervals. (for any $\epsilon>0$, we can construct a **finite cover** with length $\epsilon$ that covers all points.)
|
||||
|
||||
$S=\mathbb{Q}\cap[0,1]$, then $c_e(S)=1$.
|
||||
|
||||
- In this case, by covering the interval with $[0,1]$, we can get the length of the cover is at most 1.
|
||||
- Suppose there exists a cover $C$ with $\sum_{I\in C}\ell(I)<1$, then there must be a gap in the intervals, however, since the $\mathbb{Q}$ is dense in $\mathbb{R}$, there must be a point in the gap, which is a contradiction.
|
||||
|
||||
#### Theorem 2.5: Hankel's criterion for Riemann integrability
|
||||
|
||||
A function $f\in\mathscr{R}[a,b]$ if and only if $c_e(S_\sigma)=0$ for all $\sigma>0$.
|
||||
|
||||
_The idea is that if the oscillation of a function can be bounded by a finite set that the total length is small, then the function is Riemann integrable._
|
||||
|
||||
Hankel's idea was to apply this theorem to determining how discontinuous a function could be a Riemann integrable function.
|
||||
|
||||
> A set $S$ is dense in $X$ if every point of $X$ is a limit point of $S$.
|
||||
|
||||
#### Definition: Totally discontinuous
|
||||
|
||||
$f$ is **totally discontinuous** if the points of continuity of $f$ are not dense.
|
||||
|
||||
For example, $f(x)=\begin{cases}
|
||||
0 & x\in\mathbb{Q}\\
|
||||
1 & x\notin\mathbb{Q}
|
||||
\end{cases}$ is totally discontinuous.
|
||||
|
||||
#### Definition: Pointwise discontinuity
|
||||
|
||||
$f$ is **pointwise discontinuous** if they are dense in $[a,b]$.
|
||||
|
||||
Hankel's conjecture: $f$ is pointwise discontinuous, then $f$ is integrable.
|
||||
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Math 4121
|
||||
|
||||
Riemann integration; measurable functions; measures; the Lebesgue integral; integrable functions; $L^p$ spaces.
|
||||
Riemann integration; measurable functions; Measures; the Lebesgue integral; integrable functions; $L^p$ spaces.
|
||||
|
||||
## Textbook
|
||||
|
||||
|
||||
Reference in New Issue
Block a user