Update Math416_L2.md

This commit is contained in:
Zheyuan Wu
2025-02-04 17:47:11 -06:00
parent 8d909a3133
commit 29ab09a045

View File

@@ -204,7 +204,7 @@ Line $(tx,ty,1-t)$ intersects $\zeta^2$ at $t^2x^2+t^2y^2+(1-t)^2=1$
So $t=\frac{2}{1+x^2+y^2}$
$$
\zeta=x+iy\mapsto \frac{1}{1-|\zeta|}^2(2Re(\zeta),2Im(\zeta),|\zeta|^2-1)
\zeta=x+iy\mapsto \frac{1}{1+|\zeta|^2}(2Re(\zeta),2Im(\zeta),|\zeta|^2-1)
$$
$$