update
This commit is contained in:
71
pages/Math401/Math401_T3.md
Normal file
71
pages/Math401/Math401_T3.md
Normal file
@@ -0,0 +1,71 @@
|
||||
# Topic 3: Separable Hilbert spaces
|
||||
|
||||
## Infinite-dimensional Hilbert spaces
|
||||
|
||||
Recall from Topic 1.
|
||||
|
||||
[$L^2$ space](https://notenextra.trance-0.com/Math401/Math401_T1#section-3-further-definitions-in-measure-theory-and-integration)
|
||||
|
||||
Let $\lambda$ be a measure on $\mathbb{R}$, or any other field you are interested in.
|
||||
|
||||
A function is square integrable if
|
||||
|
||||
$$
|
||||
\int_\mathbb{R} |f(x)|^2 d\lambda(x)<\infty
|
||||
$$
|
||||
|
||||
### $L^2$ space and general Hilbert spaces
|
||||
|
||||
#### Definition of $L^2(\mathbb{R},\lambda)$
|
||||
|
||||
The space $L^2(\mathbb{R},\lambda)$ is the space of all square integrable, measurable functions on $\mathbb{R}$ with respect to the measure $\lambda$ (The Lebesgue measure).
|
||||
|
||||
The Hermitian inner product is defined by
|
||||
|
||||
$$
|
||||
\langle f,g\rangle=\int_\mathbb{R} \overline{f(x)}g(x) d\lambda(x)
|
||||
$$
|
||||
|
||||
The norm is defined by
|
||||
|
||||
$$
|
||||
\|f\|=\sqrt{\int_\mathbb{R} |f(x)|^2 d\lambda(x)}
|
||||
$$
|
||||
|
||||
The space $L^2(\mathbb{R},\lambda)$ is complete.
|
||||
|
||||
[Proof ignored here]
|
||||
|
||||
> Recall the definition of [complete metric space](https://notenextra.trance-0.com/Math4111/Math4111_L17#definition-312).
|
||||
|
||||
The inner product space $L^2(\mathbb{R},\lambda)$ is complete.
|
||||
|
||||
#### Definition of general Hilbert space
|
||||
|
||||
A Hilbert space is a complete inner product space.
|
||||
|
||||
#### General Pythagorean theorem
|
||||
|
||||
Let $u_1,u_2,\cdots,u_N$ be an orthonormal set in an inner product space $\mathscr{V}$ (may not be complete). Then for all $v\in \mathscr{V}$,
|
||||
|
||||
$$
|
||||
\|v\|^2=\sum_{i=1}^N |\langle v,u_i\rangle|^2+\left\|v-\sum_{i=1}^N \langle v,u_i\rangle u_i\right\|^2
|
||||
$$
|
||||
|
||||
[Proof ignored here]
|
||||
|
||||
#### Bessel's inequality
|
||||
|
||||
Let $u_1,u_2,\cdots,u_N$ be an orthonormal set in an inner product space $\mathscr{V}$ (may not be complete). Then for all $v\in \mathscr{V}$,
|
||||
|
||||
$$
|
||||
\sum_{i=1}^N |\langle v,u_i\rangle|^2\leq \|v\|^2
|
||||
$$
|
||||
|
||||
Immediate from the general Pythagorean theorem.
|
||||
|
||||
### Orthonormal bases
|
||||
|
||||
#### Definition of orthonormal basis
|
||||
|
||||
An orthonormal basis of a Hilbert space $\mathscr{H}$ is a set of orthonormal vectors that spans $\mathscr{H}$.
|
||||
Reference in New Issue
Block a user