Files
NoteNextra-origin/pages/Math401/Math401_T3.md
Zheyuan Wu 2e546560b0 update
2025-06-16 18:22:01 -05:00

1.9 KiB

Topic 3: Separable Hilbert spaces

Infinite-dimensional Hilbert spaces

Recall from Topic 1.

L^2 space

Let \lambda be a measure on \mathbb{R}, or any other field you are interested in.

A function is square integrable if


\int_\mathbb{R} |f(x)|^2 d\lambda(x)<\infty

L^2 space and general Hilbert spaces

Definition of L^2(\mathbb{R},\lambda)

The space L^2(\mathbb{R},\lambda) is the space of all square integrable, measurable functions on \mathbb{R} with respect to the measure \lambda (The Lebesgue measure).

The Hermitian inner product is defined by


\langle f,g\rangle=\int_\mathbb{R} \overline{f(x)}g(x) d\lambda(x)

The norm is defined by


\|f\|=\sqrt{\int_\mathbb{R} |f(x)|^2 d\lambda(x)}

The space L^2(\mathbb{R},\lambda) is complete.

[Proof ignored here]

Recall the definition of complete metric space.

The inner product space L^2(\mathbb{R},\lambda) is complete.

Definition of general Hilbert space

A Hilbert space is a complete inner product space.

General Pythagorean theorem

Let u_1,u_2,\cdots,u_N be an orthonormal set in an inner product space \mathscr{V} (may not be complete). Then for all v\in \mathscr{V},


\|v\|^2=\sum_{i=1}^N |\langle v,u_i\rangle|^2+\left\|v-\sum_{i=1}^N \langle v,u_i\rangle u_i\right\|^2

[Proof ignored here]

Bessel's inequality

Let u_1,u_2,\cdots,u_N be an orthonormal set in an inner product space \mathscr{V} (may not be complete). Then for all v\in \mathscr{V},


\sum_{i=1}^N |\langle v,u_i\rangle|^2\leq \|v\|^2

Immediate from the general Pythagorean theorem.

Orthonormal bases

Definition of orthonormal basis

An orthonormal basis of a Hilbert space \mathscr{H} is a set of orthonormal vectors that spans \mathscr{H}.