update
This commit is contained in:
@@ -170,7 +170,7 @@ $$
|
||||
|
||||
Let $u,v\in \mathscr{H}$.
|
||||
|
||||
$||v||$ is the length of $v$.
|
||||
$\|v\|$ is the length of $v$.
|
||||
|
||||
$v$ is a unit vector if $\|v\|=1$.
|
||||
|
||||
@@ -335,3 +335,437 @@ $$
|
||||
|
||||
is a linear map from $\mathscr{H}$ to $\mathscr{H}$.
|
||||
|
||||
### The spectral theorem for self-adjoint operators
|
||||
|
||||
### Spectral theorem for self-adjoint operators
|
||||
|
||||
#### Definition of spectral theorem
|
||||
|
||||
Let $\mathscr{H}$ be a Hilbert space. A self-adjoint operator $T: \mathscr{H}\to \mathscr{H}$ is a linear operator that is equal to its adjoint.
|
||||
|
||||
Then all the eigenvalues of $T$ are real and there exists an orthonormal basis of $\mathscr{H}$ consisting of eigenvectors of $T$.
|
||||
|
||||
#### Definition of spectrum
|
||||
|
||||
The spectrum of a linear operator on finite-dimensional Hilbert space $T: \mathscr{H}\to \mathscr{H}$ is the set of all distinct eigenvalues of $T$.
|
||||
|
||||
$$
|
||||
\operatorname{sp}(T)=\{\lambda: \lambda\text{ is an eigenvalue of } T\}\subset \mathbb{C}
|
||||
$$
|
||||
|
||||
#### Definition of Eigenspace
|
||||
|
||||
If $\lambda$ is an eigenvalue of $T$, the eigenspace of $T$ corresponding to $\lambda$ is the set of all eigenvectors of $T$ corresponding to $\lambda$.
|
||||
|
||||
$$
|
||||
E_\lambda(T)=\{v\in \mathscr{H}: Tv=\lambda v\}
|
||||
$$
|
||||
|
||||
We denote $P_\lambda(T):\mathscr{H}\to E_\lambda(T)$ the orthogonal projection onto $E_\lambda(T)$.
|
||||
|
||||
#### Definition of Operator norm
|
||||
|
||||
The operator norm of a linear operator $T: \mathscr{H}\to \mathscr{H}$ is the largest eigenvalue of $T$.
|
||||
|
||||
$$
|
||||
\|T\|=\max_{\|v\|=1} \|Tv\|
|
||||
$$
|
||||
|
||||
We say $T$ is **bounded** if $\|T\|<\infty$.
|
||||
|
||||
We denote $B(\mathscr{H})$ the set of all bounded linear operators on $\mathscr{H}$.
|
||||
|
||||
### Partial trace
|
||||
|
||||
#### Definition of trace
|
||||
|
||||
Let $T$ be a linear operator on $\mathscr{H}$, $(e_1,e_2,\cdots,e_n)$ be a basis of $\mathscr{H}$ and $(\epsilon_1,\epsilon_2,\cdots,\epsilon_n)$ be a basis of dual space $\mathscr{H}^*$. Then the trace of $T$ is defined by
|
||||
|
||||
$$
|
||||
\operatorname{Tr}(T)=\sum_{i=1}^n \epsilon_i(T(e_i))=\sum_{i=1}^n \langle e_i,T(e_i)\rangle
|
||||
$$
|
||||
|
||||
This is equivalent to the sum of the diagonal elements of $T$.
|
||||
|
||||
> Check the rest of the section defining the partial trace by viewing the tensor product section first.
|
||||
|
||||
#### Definition of partial trace
|
||||
|
||||
Let $T$ be a linear operator on $\mathscr{H}=\mathscr{A}\otimes \mathscr{B}$, where $\mathscr{A}$ and $\mathscr{B}$ are finite-dimensional Hilbert spaces.
|
||||
|
||||
An operator $T$ on $\mathscr{H}=\mathscr{A}\otimes \mathscr{B}$ can be written as
|
||||
|
||||
$$
|
||||
T=\sum_{i=1}^n a_i A_i\otimes B_i
|
||||
$$
|
||||
|
||||
where $A_i$ is a linear operator on $\mathscr{A}$ and $B_i$ is a linear operator on $\mathscr{B}$.
|
||||
|
||||
The partial trace of $T$ is the linear operator on $\mathscr{B}$ defined by
|
||||
|
||||
$$
|
||||
\operatorname{Tr}_{\mathscr{B}}(T)=\sum_{i=1}^n a_i \operatorname{Tr}(B_i) A_i
|
||||
$$
|
||||
|
||||
Or we can define the map $L_v: \mathscr{A}\to \mathscr{A}\otimes \mathscr{B}$ by
|
||||
|
||||
$$
|
||||
L_v(u)=u\otimes v
|
||||
$$
|
||||
|
||||
Note that $\langle u,L_v^*(u')\otimes v'\rangle=\langle u,u'\rangle \langle v,v'\rangle=\langle u\otimes v,u'\otimes v'\rangle=\langle L_v(u),u'\otimes v'\rangle$.
|
||||
|
||||
Therefore, $L_v^*\sum_{j} u_j\otimes v_j=\sum_{j} \langle v,v_j\rangle u_j$.
|
||||
|
||||
Then the partial trace of $T$ can also be defined by
|
||||
|
||||
**Let $\{v_j\}$ be a set of orthonormal basis of $\mathscr{B}$.**
|
||||
|
||||
$$
|
||||
\operatorname{Tr}_{\mathscr{B}}(T)=\sum_{j} L^*_{v_j}(T)L_{v_j}
|
||||
$$
|
||||
|
||||
#### Definition of partial trace with respect to a state
|
||||
|
||||
Let $T$ be a linear operator on $\mathscr{H}=\mathscr{A}\otimes \mathscr{B}$, where $\mathscr{A}$ and $\mathscr{B}$ are finite-dimensional Hilbert spaces.
|
||||
|
||||
Let $\rho$ be a state on $\mathscr{B}$ consisting of orthonormal basis $\{v_j\}$ and eigenvalue $\{\lambda_j\}$.
|
||||
|
||||
The partial trace of $T$ with respect to $\rho$ is the linear operator on $\mathscr{A}$ defined by
|
||||
|
||||
$$
|
||||
\operatorname{Tr}_{\mathscr{A}}(T)=\sum_{j} \lambda_j L^*_{v_j}(T)L_{v_j}
|
||||
$$
|
||||
|
||||
### Space of Bounded Linear Operators
|
||||
|
||||
> Recall the trace of a matrix is the sum of its diagonal elements.
|
||||
|
||||
#### Hilbert-Schmidt inner product
|
||||
|
||||
Let $T,S\in B(\mathscr{H})$. The Hilbert-Schmidt inner product of $T$ and $S$ is defined by
|
||||
|
||||
$$
|
||||
\langle T,S\rangle=\operatorname{Tr}(T^*S)
|
||||
$$
|
||||
|
||||
> Note here, $T^*$ is the complex conjugate transpose of $T$.
|
||||
|
||||
If we introduce the basis $\{e_i\}$ in $\mathscr{H}$, then we can write the the space of bounded linear operators as $n\times n$ complex-valued matrices $M_n(\mathbb{C})$.
|
||||
|
||||
For $T=(a_{ij})$, $S=(b_{ij})$, we have
|
||||
|
||||
$$
|
||||
\operatorname{Tr}(A^*B)=\sum_{i=1}^n \sum_{j=1}^n \overline{a_{ij}}b_{ij}
|
||||
$$
|
||||
|
||||
The inner product is the standard Hermitian inner product in $\mathbb{C}^{n\times n}$.
|
||||
|
||||
#### Definition of Hilbert-Schmidt norm
|
||||
|
||||
The Hilbert-Schmidt norm of a linear operator $T: \mathscr{H}\to \mathscr{H}$ is defined by
|
||||
|
||||
$$
|
||||
\|T\|=\sqrt{\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2}
|
||||
$$
|
||||
|
||||
**[The trace of operator does not depend on the basis.](https://notenextra.trance-0.com/Math429/Math429_L38#theorem-850)**
|
||||
|
||||
### Tensor products of finite-dimensional Hilbert spaces
|
||||
|
||||
Let $X=X_1\times X_2\times \cdots \times X_n$ be a Cartesian product of $n$ sets.
|
||||
|
||||
Let $x=(x_1,x_2,\cdots,x_n)$ be a vector in $X$.
|
||||
$x_j\in X_j$ for $j=1,2,\cdots,n$.
|
||||
|
||||
Let $a\in X_j$ for $j=1,2,\cdots,n$.
|
||||
|
||||
Let's denote the space of all functions from $X$ to $\mathbb{C}$ by $\mathscr{H}$ and the space of all functions from $X_j$ to $\mathbb{C}$ by $\mathscr{H}_j$.
|
||||
|
||||
$$
|
||||
\epsilon_{a}^{(j)}(x_j)=\begin{cases}
|
||||
1 & \text{if } x_j=a \\
|
||||
0 & \text{if } x_j\neq a
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
Then we can define a basis of $\mathscr{H}_j$ by $\{\epsilon_{a}^{(j)}(x_j)\}_{a\in X_j}$.
|
||||
|
||||
_Any function $f:X_j\to \mathbb{C}$ can be written as a linear combination of the basis vectors._
|
||||
|
||||
$$
|
||||
f(x_j)=\sum_{a\in X_j} f(a)\epsilon_{a}^{(j)}(x_j)
|
||||
$$
|
||||
|
||||
|
||||
Now, let $a=(a_1,a_2,\cdots,a_n)$ be a vector in $X$, and $x=(x_1,x_2,\cdots,x_n)$ be a vector in $X$. Note that $a_j,x_j\in X_j$ for $j=1,2,\cdots,n$.
|
||||
|
||||
Define
|
||||
|
||||
$$
|
||||
\epsilon_a(x)=\prod_{j=1}^n \epsilon_{a_j}^{(j)}(x_j)=\begin{cases}
|
||||
1 & \text{if } a_j=x_j \text{ for all } j=1,2,\cdots,n \\
|
||||
0 & \text{otherwise}
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
Then we can define a basis of $\mathscr{H}$ by $\{\epsilon_a\}_{a\in X}$.
|
||||
|
||||
_Any function $f:X\to \mathbb{C}$ can be written as a linear combination of the basis vectors._
|
||||
|
||||
$$
|
||||
f(x)=\sum_{a\in X} f(a)\epsilon_a(x)
|
||||
$$
|
||||
|
||||
**The tensor product of basis elements** is defined by
|
||||
|
||||
$$
|
||||
\epsilon_a=\epsilon_{a_1}^{(1)}\otimes \epsilon_{a_2}^{(2)}\otimes \cdots \otimes \epsilon_{a_n}^{(n)}
|
||||
$$
|
||||
|
||||
**The tensor product of two finite-dimensional Hilbert spaces** (in $\mathscr{H}$) is defined by
|
||||
|
||||
Let $\mathscr{H}_1$ and $\mathscr{H}_2$ be two finite dimensional Hilbert spaces. Let $u_1\in \mathscr{H}_1$ and $v_1\in \mathscr{H}_2$.
|
||||
|
||||
$$
|
||||
u_1\otimes v_1
|
||||
$$
|
||||
|
||||
is a bi-anti-linear map from $\mathscr{H}_1\otimes \mathscr{H}_2$ to $\mathbb{F}$ (in this case, $\mathbb{C}$). And $\forall u\in \mathscr{H}_1, v\in \mathscr{H}_2$,
|
||||
|
||||
$$
|
||||
(u_1\otimes v_1)(u, v)=\langle u,u_1\rangle \langle v,v_1\rangle
|
||||
$$
|
||||
|
||||
We call such forms **decomposable**. The tensor product of two finite-dimensional Hilbert spaces, denoted by $\mathscr{H}_1\otimes \mathscr{H}_2$, is the set of all linear combinations of decomposable forms. Represented by the following:
|
||||
|
||||
$$
|
||||
(\sum_{i=1}^n a_i u_i\otimes v_i)(u, v)=\sum_{i=1}^n a_i \langle v,u_i\rangle \langle v_i,u\rangle
|
||||
$$
|
||||
|
||||
Note that $a_i\in \mathbb{C}$ for complex-vector spaces.
|
||||
|
||||
This is a linear space of dimension $\dim \mathscr{H}_1\times \dim \mathscr{H}_2$.
|
||||
|
||||
We define the inner product of two elements of $\mathscr{H}_1\otimes \mathscr{H}_2$ ($u_1\otimes v_1:(\mathscr{H}_1\otimes \mathscr{H}_2)\to \mathbb{C}$, $u_2\otimes v_2:(\mathscr{H}_1\otimes \mathscr{H}_2)\to \mathbb{C}$ $\in \mathscr{H}_1\otimes \mathscr{H}_2$) by
|
||||
|
||||
$$
|
||||
\langle u_1\otimes v_1, u_2\otimes v_2\rangle=\langle u_1,u_2\rangle \langle v_1,v_2\rangle=(u_1\otimes v_1)(u_2,v_2)
|
||||
$$
|
||||
|
||||
### Tensor products of linear operators
|
||||
|
||||
Let $T_1$ be a linear operator on $\mathscr{H}_1$ and $T_2$ be a linear operator on $\mathscr{H}_2$, where $\mathscr{H}_1$ and $\mathscr{H}_2$ are finite-dimensional Hilbert spaces. The tensor product of $T_1$ and $T_2$ (denoted by $T_1\otimes T_2$) on $\mathscr{H}_1\otimes \mathscr{H}_2$, such that **on decomposable elements** is defined by
|
||||
|
||||
$$
|
||||
(T_1\otimes T_2)(v_1\otimes v_2)=T_1(v_1)\otimes T_2(v_2)=\langle v_1,T_1(v_1)\rangle \langle v_2,T_2(v_2)\rangle
|
||||
$$
|
||||
|
||||
for all $v_1\in \mathscr{H}_1$ and $v_2\in \mathscr{H}_2$.
|
||||
|
||||
The tensor product of two linear operators $T_1$ and $T_2$ is a linear combination in the form as follows:
|
||||
|
||||
$$
|
||||
\sum_{i=1}^n a_i T_1(u_i)\otimes T_2(v_i)
|
||||
$$
|
||||
|
||||
for all $u_i\in \mathscr{H}_1$ and $v_i\in \mathscr{H}_2$.
|
||||
|
||||
Such tensor product of linear operators is well defined.
|
||||
|
||||
If $\sum_{i=1}^n a_i u_i\otimes v_i=\sum_{j=1}^m b_j u_j\otimes v_j$, then $a_i=b_j$ for all $i=1,2,\cdots,n$ and $j=1,2,\cdots,m$.
|
||||
|
||||
Then $\sum_{i=1}^n a_i T_1(u_i)\otimes T_2(v_i)=\sum_{j=1}^m b_j T_1(u_j)\otimes T_2(v_j)$.
|
||||
|
||||
#### Tensor product of linear operators on Hilbert spaces
|
||||
|
||||
Let $T_1$ be a linear operator on $\mathscr{H}_1$ and $T_2$ be a linear operator on $\mathscr{H}_2$, where $\mathscr{H}_1$ and $\mathscr{H}_2$ are finite-dimensional Hilbert spaces. The tensor product of $T_1$ and $T_2$ (denoted by $T_1\otimes T_2$) on $\mathscr{H}_1\otimes \mathscr{H}_2$, such that **on decomposable elements** is defined by
|
||||
|
||||
$$
|
||||
(T_1\otimes T_2)(v_1\otimes v_2)=T_1(v_1)\otimes T_2(v_2)=\langle v_1,T_1(v_1)\rangle \langle v_2,T_2(v_2)\rangle
|
||||
$$
|
||||
|
||||
#### Extended Dirac notation
|
||||
|
||||
Suppose $\mathscr{H}=\mathbb{C}^n$ with the standard basis $\{e_i\}$.
|
||||
|
||||
$e_j=|j\rangle$ and
|
||||
|
||||
$$
|
||||
|j_1\dots j_n\rangle=e_{j_1}\otimes e_{j_2}\otimes \cdots \otimes e_{j_n}=
|
||||
$$
|
||||
|
||||
#### The Hadamard Transform
|
||||
|
||||
Let $\mathscr{H}=\mathbb{C}^2$ with the standard basis $\{e_1,e_2\}=\{|0\rangle,|1\rangle\}$.
|
||||
|
||||
The linear operator $H_2$ is defined by
|
||||
|
||||
$$
|
||||
H_2=\frac{1}{\sqrt{2}}\begin{pmatrix}
|
||||
1 & 1 \\
|
||||
1 & -1
|
||||
\end{pmatrix}=\frac{1}{\sqrt{2}}(|0\rangle\langle 0|+|1\rangle\langle 0|+|0\rangle\langle 1|-|1\rangle\langle 1|)
|
||||
$$
|
||||
|
||||
The Hadamard transform is the linear operator $H_2$ on $\mathbb{C}^2$.
|
||||
|
||||
### Singular value and Schmidt decomposition
|
||||
|
||||
#### Definition of SVD (Singular Value Decomposition)
|
||||
|
||||
Let $T:\mathscr{U}\to \mathscr{V}$ be a linear operator between two finite-dimensional Hilbert spaces $\mathscr{U}$ and $\mathscr{V}$.
|
||||
|
||||
We denote the inner product of $\mathscr{U}$ and $\mathscr{V}$ by $\langle \cdot, \cdot \rangle$.
|
||||
|
||||
Then there exists a decomposition of $T$
|
||||
|
||||
$$
|
||||
T=d_1 T_1+d_2 T_2+\cdots +d_n T_n
|
||||
$$
|
||||
|
||||
with $d_1>d_2>\cdots >d_n>0$ and $T_i:\mathscr{U}\to \mathscr{V}$ such that:
|
||||
|
||||
1. $T_iT_j^*=0$, $T_i^*T_j=0$ for $i\neq j$(
|
||||
2. $T_i|_{\mathscr{R}(T_i^*)}:\mathscr{R}(T_i^*)\to \mathscr{R}(T_i)$ is an isomorphism with inverse $T_i^*$ where $\mathscr{R}(\cdot)$ is the range of the operator.
|
||||
|
||||
The $d_i$ are called the singular values of $T$.
|
||||
|
||||
[Gram-Schmidt Decomposition](https://notenextra.trance-0.com/Math429/Math429_L27#theorem-632-gram-schmidt)
|
||||
|
||||
## Basic Group Theory
|
||||
|
||||
### Finite groups
|
||||
|
||||
#### Definition of group
|
||||
|
||||
A group is a set $G$ with a binary operation $\cdot$ that satisfies the following axioms:
|
||||
|
||||
1. **Closure**: For all $a,b\in G$, $a\cdot b\in G$.
|
||||
2. **Associativity**: For all $a,b,c\in G$, $(a\cdot b)\cdot c=a\cdot (b\cdot c)$.
|
||||
3. **Identity**: There exists an element $e\in G$ such that for all $a\in G$, $a\cdot e=e\cdot a=a$.
|
||||
4. **Inverses**: For all $a\in G$, there exists an element $b\in G$ such that $a\cdot b=b\cdot a=e$.
|
||||
|
||||
#### Symmetric group $S_n$
|
||||
|
||||
The symmetric group $S_n$ is the group of all permutations of $n$ elements.
|
||||
|
||||
$$
|
||||
S_n=\{f: \{1,2,\cdots,n\}\to \{1,2,\cdots,n\} \text{ is a bijection}\}
|
||||
$$
|
||||
|
||||
#### Unitary group $U(n)$
|
||||
|
||||
The unitary group $U(n)$ is the group of all $n\times n$ unitary matrices.
|
||||
|
||||
Such that $A^*=A$, where $A^*$ is the complex conjugate transpose of $A$. $A^*=(\overline{A})^T$.
|
||||
|
||||
#### Cyclic group $\mathbb{Z}_n$
|
||||
|
||||
The cyclic group $\mathbb{Z}_n$ is the group of all integers modulo $n$.
|
||||
|
||||
$$
|
||||
\mathbb{Z}_n=\{0,1,2,\cdots,n-1\}
|
||||
$$
|
||||
|
||||
#### Definition of group homomorphism
|
||||
|
||||
A group homomorphism is a function $\varPhi:G\to H$ between two groups $G$ and $H$ that satisfies the following axiom:
|
||||
|
||||
$$
|
||||
\varPhi(a\cdot b)=\varPhi(a)\cdot \varPhi(b)
|
||||
$$
|
||||
|
||||
A bijective group homomorphism is called group isomorphism.
|
||||
|
||||
#### Homomorphism sends identity to identity, inverses to inverses
|
||||
|
||||
Let $\varPhi:G\to H$ be a group homomorphism. $e_G$ and $e_H$ are the identity elements of $G$ and $H$ respectively. Then
|
||||
|
||||
1. $\varPhi(e_G)=e_H$
|
||||
2. $\varPhi(a^{-1})=\varPhi(a)^{-1}$. $\forall a\in G$
|
||||
|
||||
### More on the symmetric group
|
||||
|
||||
#### General linear group over $\mathbb{C}$
|
||||
|
||||
The general linear group over $\mathbb{C}$ is the group of all $n\times n$ invertible complex matrices.
|
||||
|
||||
$$
|
||||
GL(n,\mathbb{C})=\{A\in M_n(\mathbb{C}) \text{ is invertible}\}
|
||||
$$
|
||||
|
||||
The map $T: S_n\to GL(n,\mathbb{C})$ is a group homomorphism.
|
||||
|
||||
#### Definition of sign of a permutation
|
||||
|
||||
Let $T:S_n\to GL(n,\mathbb{C})$ be the group homomorphism. The sign of a permutation $\sigma\in S_n$ is defined by
|
||||
|
||||
$$
|
||||
\operatorname{sgn}(\sigma)=\det(T(\sigma))
|
||||
$$
|
||||
|
||||
We say $\sigma$ is even if $\operatorname{sgn}(\sigma)=1$ and odd if $\operatorname{sgn}(\sigma)=-1$.
|
||||
|
||||
### Fourier Transform in $\mathbb{Z}_N$.
|
||||
|
||||
The vector space $L^2(\mathbb{Z}_N)$ is the set of all complex-valued functions on $\mathbb{Z}_N$ with the inner product
|
||||
|
||||
$$
|
||||
\langle f,g\rangle=\sum_{k=0}^{N-1} \overline{f(k)}g(k)
|
||||
$$
|
||||
|
||||
An orthonormal basis of $L^2(\mathbb{Z}_N)$ is given by $\delta_y,y\in \mathbb{Z}_N$.
|
||||
|
||||
$$
|
||||
\delta_y(k)=\begin{cases}
|
||||
1 & \text{if } k=y \\
|
||||
0 & \text{otherwise}
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
in Dirac notation, we have
|
||||
|
||||
$$
|
||||
\delta_y=|y\rangle=|y+N\rangle
|
||||
$$
|
||||
|
||||
#### Definition of Fourier transform
|
||||
|
||||
Define $\varphi_k(x)=\frac{1}{\sqrt{N}}e^{2\pi i kx/N}$ for $k\in \mathbb{Z}_N$. $\varphi_k:\mathbb{Z}\to \mathbb{C}$ is a function.
|
||||
|
||||
The Fourier transform of a function $F\in L^2(\mathbb{Z}_N)$ such that $(Ff)(k)=\langle \varphi_k,f\rangle$ is defined by
|
||||
|
||||
$$
|
||||
F=\frac{1}{\sqrt{N}}\sum_{j=0}^{N-1} \sum_{k=0}^{N-1} e^{2\pi i kj/N}|k\rangle\langle j|
|
||||
$$
|
||||
|
||||
### Symmetric and anti-symmetric tensors
|
||||
|
||||
Let $\mathscr{H}^{\otimes n}$ be the $n$-fold tensor product of a Hilbert space $\mathscr{H}$.
|
||||
|
||||
We define the $S_n$ on $\mathscr{H}^{\otimes n}$ by
|
||||
|
||||
Let $\eta\in S_n$ be a permutation.
|
||||
|
||||
$$
|
||||
\prod(\eta)v_1\otimes v_2\otimes \cdots \otimes v_n=v_{\eta^{-1}(1)}\otimes v_{\eta^{-1}(2)}\otimes \cdots \otimes v_{\eta^{-1}(n)}
|
||||
$$
|
||||
|
||||
And extend to $\mathscr{H}^{\otimes n}$ by linearity.
|
||||
|
||||
This gives the property that $\zeta,\eta\in S_n$, $\prod(\zeta\eta)=\prod(\zeta)\prod(\eta)$.
|
||||
|
||||
#### Definition of symmetric and anti-symmetric tensors
|
||||
|
||||
Let $\mathscr{H}$ be a finite-dimensional Hilbert space.
|
||||
|
||||
An element in $\mathscr{H}^{\otimes n}$ is called symmetric if it is invariant under the action of $S_n$. Let $\alpha\in \mathscr{H}^{\otimes n}$
|
||||
|
||||
$$\prod(\eta)\alpha=\alpha \text{ for all } \eta\in S_n.$$
|
||||
|
||||
It is called anti-symmetric if
|
||||
|
||||
$$
|
||||
\prod(\eta)\alpha=\operatorname{sgn}(\eta)\alpha \text{ for all } \eta\in S_n.
|
||||
$$
|
||||
|
||||
71
pages/Math401/Math401_T3.md
Normal file
71
pages/Math401/Math401_T3.md
Normal file
@@ -0,0 +1,71 @@
|
||||
# Topic 3: Separable Hilbert spaces
|
||||
|
||||
## Infinite-dimensional Hilbert spaces
|
||||
|
||||
Recall from Topic 1.
|
||||
|
||||
[$L^2$ space](https://notenextra.trance-0.com/Math401/Math401_T1#section-3-further-definitions-in-measure-theory-and-integration)
|
||||
|
||||
Let $\lambda$ be a measure on $\mathbb{R}$, or any other field you are interested in.
|
||||
|
||||
A function is square integrable if
|
||||
|
||||
$$
|
||||
\int_\mathbb{R} |f(x)|^2 d\lambda(x)<\infty
|
||||
$$
|
||||
|
||||
### $L^2$ space and general Hilbert spaces
|
||||
|
||||
#### Definition of $L^2(\mathbb{R},\lambda)$
|
||||
|
||||
The space $L^2(\mathbb{R},\lambda)$ is the space of all square integrable, measurable functions on $\mathbb{R}$ with respect to the measure $\lambda$ (The Lebesgue measure).
|
||||
|
||||
The Hermitian inner product is defined by
|
||||
|
||||
$$
|
||||
\langle f,g\rangle=\int_\mathbb{R} \overline{f(x)}g(x) d\lambda(x)
|
||||
$$
|
||||
|
||||
The norm is defined by
|
||||
|
||||
$$
|
||||
\|f\|=\sqrt{\int_\mathbb{R} |f(x)|^2 d\lambda(x)}
|
||||
$$
|
||||
|
||||
The space $L^2(\mathbb{R},\lambda)$ is complete.
|
||||
|
||||
[Proof ignored here]
|
||||
|
||||
> Recall the definition of [complete metric space](https://notenextra.trance-0.com/Math4111/Math4111_L17#definition-312).
|
||||
|
||||
The inner product space $L^2(\mathbb{R},\lambda)$ is complete.
|
||||
|
||||
#### Definition of general Hilbert space
|
||||
|
||||
A Hilbert space is a complete inner product space.
|
||||
|
||||
#### General Pythagorean theorem
|
||||
|
||||
Let $u_1,u_2,\cdots,u_N$ be an orthonormal set in an inner product space $\mathscr{V}$ (may not be complete). Then for all $v\in \mathscr{V}$,
|
||||
|
||||
$$
|
||||
\|v\|^2=\sum_{i=1}^N |\langle v,u_i\rangle|^2+\left\|v-\sum_{i=1}^N \langle v,u_i\rangle u_i\right\|^2
|
||||
$$
|
||||
|
||||
[Proof ignored here]
|
||||
|
||||
#### Bessel's inequality
|
||||
|
||||
Let $u_1,u_2,\cdots,u_N$ be an orthonormal set in an inner product space $\mathscr{V}$ (may not be complete). Then for all $v\in \mathscr{V}$,
|
||||
|
||||
$$
|
||||
\sum_{i=1}^N |\langle v,u_i\rangle|^2\leq \|v\|^2
|
||||
$$
|
||||
|
||||
Immediate from the general Pythagorean theorem.
|
||||
|
||||
### Orthonormal bases
|
||||
|
||||
#### Definition of orthonormal basis
|
||||
|
||||
An orthonormal basis of a Hilbert space $\mathscr{H}$ is a set of orthonormal vectors that spans $\mathscr{H}$.
|
||||
@@ -8,4 +8,5 @@ export default {
|
||||
Math401_N3: "Math 401, Notes 3",
|
||||
Math401_T1: "Math 401, Topic 1: Probability under language of measure theory",
|
||||
Math401_T2: "Math 401, Topic 2: Finite-dimensional Hilbert spaces",
|
||||
Math401_T3: "Math 401, Topic 3: Separable Hilbert spaces",
|
||||
}
|
||||
Reference in New Issue
Block a user