new course
This commit is contained in:
@@ -1,13 +1,20 @@
|
||||
course_code=input('We will follow the naming pattern of {class}_L{lecture number}.md, enter the course code to start.\n')
|
||||
start=input('enter the number of lecture that you are going to start.\n')
|
||||
end=input('Enter the end of lecture (exclusive).\n')
|
||||
start=int(start)
|
||||
end=int(end)
|
||||
while start<end:
|
||||
# create a empty text file
|
||||
fp = open(f'{course_code}_L{start}.md', 'w')
|
||||
fp.write(f'# Lecture {start}')
|
||||
fp.close()
|
||||
start+=1
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
course_code=input('We will follow the naming pattern of {class}_L{lecture number}.md, enter the course code to start.\n')
|
||||
start=input('enter the number of lecture that you are going to start.\n')
|
||||
end=input('Enter the end of lecture (exclusive).\n')
|
||||
start=int(start)
|
||||
end=int(end)
|
||||
|
||||
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
while start<end:
|
||||
# create a empty text file
|
||||
file_name = Path.joinpath(cur_dir, f'{course_code}_L{start}.md')
|
||||
fp = open(file_name, 'w')
|
||||
fp.write(f'# Lecture {start}')
|
||||
fp.close()
|
||||
start+=1
|
||||
|
||||
print("Complete")
|
||||
105
pages/Math4121/Math4121_L1.md
Normal file
105
pages/Math4121/Math4121_L1.md
Normal file
@@ -0,0 +1,105 @@
|
||||
# Lecture 1
|
||||
|
||||
## Chapter 5: Differentiation
|
||||
|
||||
### The derivative of a real function
|
||||
|
||||
#### Definition 5.1
|
||||
|
||||
Let $f$ be a real-valued function on an interval $[a,b]$ ($f: [a,b] \to \mathbb{R}$).
|
||||
|
||||
We say that $f$ is _differentiable_ at a point $x\in [a,b]$ if the limit
|
||||
|
||||
$$
|
||||
\lim_{t\to x} \frac{f(t)-f(x)}{t-x}
|
||||
$$
|
||||
|
||||
exists.
|
||||
|
||||
Then we defined the derivative of $f$, $f'$, a function whose domain is the set of all $x\in [a,b]$ at which $f$ is differentiable, by
|
||||
|
||||
$$
|
||||
f'(x) = \lim_{t\to x} \frac{f(t)-f(x)}{t-x}
|
||||
$$
|
||||
|
||||
#### Theorem 5.2
|
||||
|
||||
Let $f:[a,b]\to \mathbb{R}$. If $f$ is differentiable at $x\in [a,b]$, then $f$ is continuous at $x$.
|
||||
|
||||
Proof:
|
||||
|
||||
We need to show that $\lim_{t\to x} f(t) = f(x)$.
|
||||
|
||||
Equivalently, we need to show that
|
||||
|
||||
$$
|
||||
\lim_{t\to x} (f(t)-f(x)) = 0
|
||||
$$
|
||||
|
||||
So for $t\ne x$, since $f$ is differentiable at $x$, we have
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\lim_{t\to x} (f(t)-f(x)) &= \lim_{t\to x} \left(\frac{f(t)-f(x)}{t-x}\right)(t-x) \\
|
||||
&= \lim_{t\to x} \left(\frac{f(t)-f(x)}{t-x}\right) \lim_{t\to x} (t-x) \\
|
||||
&= f'(x) \cdot 0 \\
|
||||
&= 0
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Therefore, differentiable is a stronger condition than continuous.
|
||||
|
||||
> There exists some function that is continuous but not differentiable.
|
||||
>
|
||||
> For example, $f(x) = |x|$ is continuous at $x=0$, but not differentiable at $x=0$.
|
||||
>
|
||||
> We can see that the left-hand limit and the right-hand limit are not the same.
|
||||
>
|
||||
> $$ \lim_{t\to 0^-} \frac{|t|-|0|}{t-0} = -1 \quad \text{and} \quad \lim_{t\to 0^+} \frac{|t|-|0|}{t-0} = 1 $$
|
||||
>
|
||||
> Therefore, the limit does not exist. for $f(x) = |x|$ at $x=0$.
|
||||
|
||||
#### Theorem 5.3
|
||||
|
||||
Suppose $f$ is differentiable at $x\in [a,b]$ and $g$ is differentiable at a point $x\in [a,b]$. Then $f+g$, $fg$ and $f/g$ are differentiable at $x$, and
|
||||
|
||||
(a) $(f+g)'(x) = f'(x) + g'(x)$
|
||||
(b) $(fg)'(x) = f'(x)g(x) + f(x)g'(x)$
|
||||
(c) $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$, provided $g(x)\ne 0$
|
||||
|
||||
Proof:
|
||||
|
||||
Since the limit of product is the product of the limits, we can use the definition of the derivative to prove the theorem.
|
||||
|
||||
(a)
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
(f+g)'(x) &= \lim_{t\to x} \frac{(f+g)(t)-(f+g)(x)}{t-x} \\
|
||||
&= \lim_{t\to x} \frac{f(t)-f(x)}{t-x} + \lim_{t\to x} \frac{g(t)-g(x)}{t-x} \\
|
||||
&= f'(x) + g'(x)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
(b)
|
||||
|
||||
Since $f$ is differentiable at $x$, we have $\lim_{t\to x} f(t) = f(x)$.
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
(fg)'(x) &= \lim_{t\to x} \left(\frac{f(t)g(t)-f(x)g(x)}{t-x}\right) \\
|
||||
&= \lim_{t\to x} \left(f(t)\frac{g(t)-g(x)}{t-x} + g(x)\frac{f(t)-f(x)}{t-x}\right) \\
|
||||
&= f(t) \lim_{t\to x} \frac{g(t)-g(x)}{t-x} + g(x) \lim_{t\to x} \frac{f(t)-f(x)}{t-x} \\
|
||||
&= f(x)g'(x) + g(x)f'(x)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
(c)
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\left(\frac{f}{g}\right)'(x) &= \lim_{t\to x}\left(\frac{f(t)g(x)}{g(t)g(x)} - \frac{f(x)g(x)}{g(t)g(x)}\right) \\
|
||||
&= \frac{1}{g(t)g(x)}\left(\lim_{t\to x} (f(t)g(x)-f(x)g(t))\right) \\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
1
pages/Math4121/Math4121_L10.md
Normal file
1
pages/Math4121/Math4121_L10.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 10
|
||||
1
pages/Math4121/Math4121_L11.md
Normal file
1
pages/Math4121/Math4121_L11.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 11
|
||||
1
pages/Math4121/Math4121_L12.md
Normal file
1
pages/Math4121/Math4121_L12.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 12
|
||||
1
pages/Math4121/Math4121_L13.md
Normal file
1
pages/Math4121/Math4121_L13.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 13
|
||||
1
pages/Math4121/Math4121_L14.md
Normal file
1
pages/Math4121/Math4121_L14.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 14
|
||||
1
pages/Math4121/Math4121_L15.md
Normal file
1
pages/Math4121/Math4121_L15.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 15
|
||||
1
pages/Math4121/Math4121_L16.md
Normal file
1
pages/Math4121/Math4121_L16.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 16
|
||||
1
pages/Math4121/Math4121_L17.md
Normal file
1
pages/Math4121/Math4121_L17.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 17
|
||||
1
pages/Math4121/Math4121_L18.md
Normal file
1
pages/Math4121/Math4121_L18.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 18
|
||||
1
pages/Math4121/Math4121_L19.md
Normal file
1
pages/Math4121/Math4121_L19.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 19
|
||||
1
pages/Math4121/Math4121_L2.md
Normal file
1
pages/Math4121/Math4121_L2.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 2
|
||||
1
pages/Math4121/Math4121_L20.md
Normal file
1
pages/Math4121/Math4121_L20.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 20
|
||||
1
pages/Math4121/Math4121_L21.md
Normal file
1
pages/Math4121/Math4121_L21.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 21
|
||||
1
pages/Math4121/Math4121_L22.md
Normal file
1
pages/Math4121/Math4121_L22.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 22
|
||||
1
pages/Math4121/Math4121_L23.md
Normal file
1
pages/Math4121/Math4121_L23.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 23
|
||||
1
pages/Math4121/Math4121_L24.md
Normal file
1
pages/Math4121/Math4121_L24.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 24
|
||||
1
pages/Math4121/Math4121_L25.md
Normal file
1
pages/Math4121/Math4121_L25.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 25
|
||||
1
pages/Math4121/Math4121_L26.md
Normal file
1
pages/Math4121/Math4121_L26.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 26
|
||||
1
pages/Math4121/Math4121_L27.md
Normal file
1
pages/Math4121/Math4121_L27.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 27
|
||||
1
pages/Math4121/Math4121_L28.md
Normal file
1
pages/Math4121/Math4121_L28.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 28
|
||||
1
pages/Math4121/Math4121_L29.md
Normal file
1
pages/Math4121/Math4121_L29.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 29
|
||||
1
pages/Math4121/Math4121_L3.md
Normal file
1
pages/Math4121/Math4121_L3.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 3
|
||||
1
pages/Math4121/Math4121_L4.md
Normal file
1
pages/Math4121/Math4121_L4.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 4
|
||||
1
pages/Math4121/Math4121_L5.md
Normal file
1
pages/Math4121/Math4121_L5.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 5
|
||||
1
pages/Math4121/Math4121_L6.md
Normal file
1
pages/Math4121/Math4121_L6.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 6
|
||||
1
pages/Math4121/Math4121_L7.md
Normal file
1
pages/Math4121/Math4121_L7.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 7
|
||||
1
pages/Math4121/Math4121_L8.md
Normal file
1
pages/Math4121/Math4121_L8.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 8
|
||||
1
pages/Math4121/Math4121_L9.md
Normal file
1
pages/Math4121/Math4121_L9.md
Normal file
@@ -0,0 +1 @@
|
||||
# Lecture 9
|
||||
6
pages/Math4121/_meta.js
Normal file
6
pages/Math4121/_meta.js
Normal file
@@ -0,0 +1,6 @@
|
||||
export default {
|
||||
index: "Course Description",
|
||||
"---":{
|
||||
type: 'separator'
|
||||
}
|
||||
}
|
||||
23
pages/Math4121/index.md
Normal file
23
pages/Math4121/index.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# Math 4121
|
||||
|
||||
Riemann integration; measurable functions; measures; the Lebesgue integral; integrable functions; $L^p$ spaces.
|
||||
|
||||
## Textbook
|
||||
|
||||
Principles of Mathematical Analysis by Walter Rudin
|
||||
|
||||
A radical Approach to Lebesgue's Theory of Integration by David
|
||||
|
||||
## Grade
|
||||
|
||||
| item | percentage |
|
||||
| --- | --- |
|
||||
| Homework | 40% |
|
||||
| Midterm 1 | 15% |
|
||||
| Midterm 2 | 15% |
|
||||
| Final | 30% |
|
||||
|
||||
## Homework
|
||||
|
||||
Due every Monday.
|
||||
|
||||
@@ -32,6 +32,9 @@ export default {
|
||||
CSE347: {
|
||||
type: 'page',
|
||||
},
|
||||
Math4121: {
|
||||
type: 'page',
|
||||
},
|
||||
about: {
|
||||
display: 'hidden'
|
||||
},
|
||||
|
||||
Reference in New Issue
Block a user