Update Math4121_L10.md

This commit is contained in:
Trance-0
2025-02-08 17:35:06 -06:00
parent 53d1578c44
commit 3d3453e61b

View File

@@ -79,9 +79,28 @@ Under the hypothesis, $f$ is bounded on $[a, b]$ and continuous at $s$.
We can choose partition $P=\{x_0,x_1,x_2,x_3\}$ such that $a=x_0<x_1=s<x_2<x_3=b$.
Then $U(P,f,\alpha)=\sup_{x\in [s,x_3]}f(x)(\alpha(x_3)-\alpha(s))$. $L(P,f,\alpha)=\inf_{x\in [s,x_3]}f(x)(\alpha(x_3)-\alpha(s))$.
Then,
$$
\begin{aligned}
U(P,f,\alpha)&=\sum_{i=1}^3 M_i(\alpha(x_i)-\alpha(x_{i-1}))\\
&=M_1(0-0)+M_2(1-0)+M_3(1-1)\\
&=\sup_{x\in [s,x_2]}f(x)(\alpha(x_2)-\alpha(s))\\
&=\sup_{x\in [s,x_2]}f(x)(1-0)\\
&=M_2 \\
\end{aligned}
$$
Since $f$ is continuous at $s$, when $x_3\to s$, $U(P,f,\alpha)\to f(s)$ and $L(P,f,\alpha)\to f(s)$.
$$
\begin{aligned}
L(P,f,\alpha)&=\sum_{i=1}^3 m_i(\alpha(x_i)-\alpha(x_{i-1}))\\
&=m_1(0-0)+m_2(1-0)+m_3(1-1)\\
&=\inf_{x\in [s,x_2]}f(x)(\alpha(x_2)-\alpha(s))\\
&=\inf_{x\in [s,x_2]}f(x)(1-0)\\
&=m_2 \\
\end{aligned}
$$
Since $f$ is continuous at $s$, when $x\to s$, $U(P,f,\alpha)\to f(s)$ and $L(P,f,\alpha)\to f(s)$.
Therefore, $U(P,f,\alpha)-L(P,f,\alpha)\to 0$, $f\in \mathscr{R}(\alpha)$ on $[a, b]$, and $\int_a^b f d\alpha=f(s)$.