update medias and lecture notes

This commit is contained in:
Zheyuan Wu
2025-04-25 10:04:28 -05:00
parent f99983a53e
commit 41480bc789
3 changed files with 177 additions and 1 deletions

View File

@@ -135,7 +135,7 @@ $$
##### Approaches 3: Linear approach
$x_1\simeq P_1X$ and $x_2\simeq P_2X$
$x_1\cong P_1X$ and $x_2\cong P_2X$
$x_1\times P_1X = 0$ and $x_2\times P_2X = 0$

View File

@@ -1 +1,177 @@
# CSE559A Lecture 26
## Continue on Geometry and Multiple Views
### The Essential and Fundamental Matrices
#### Math of the epipolar constraint: Calibrated case
Recall Epipolar Geometry
![Epipolar Geometry Configuration](https://notenextra.trance-0.com/CSE559A/Epipolar_geometry_setup.png)
Epipolar constraint:
If we set the config for the first camera as the world origin and $[I|0]\begin{pmatrix}y\\1\end{pmatrix}=x$, and $[R|t]\begin{pmatrix}y\\1\end{pmatrix}=x'$, then
Notice that $x'\cdot [t\times (Ry)]=0$
$$
x'^T E x_1 = 0
$$
We denote the constraint defined by the Essential Matrix as $E$.
$E x$ is the epipolar line associated with $x$ ($l'=Ex$)
$E^T x'$ is the epipolar line associated with $x'$ ($l=E^T x'$)
$E e=0$ and $E^T e'=0$ ($x$ and $x'$ don't matter)
$E$ is singular (rank 2) and have five degrees of freedom.
#### Epipolar constraint: Uncalibrated case
If the calibration matrices $K$ and $K'$ are unknown, we can write the epipolar constraint in terms of unknown normalized coordinates:
$$
x'^T_{norm} E x_{norm} = 0
$$
where $x_{norm}=K^{-1} x$, $x'_{norm}=K'^{-1} x'$
$$
x'^T_{norm} E x_{norm} = 0\implies x'^T_{norm} Fx=0
$$
where $F=K'^{-1}EK^{-1}$ is the **Fundamental Matrix**.
$$
(x',y',1)\begin{bmatrix}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{bmatrix}\begin{pmatrix}
x\\y\\1
\end{pmatrix}=0
$$
Properties of $F$:
$F x$ is the epipolar line associated with $x$ ($l'=F x$)
$F^T x'$ is the epipolar line associated with $x'$ ($l=F^T x'$)
$F e=0$ and $F^T e'=0$
$F$ is singular (rank two) and has seven degrees of freedom
#### Estimating the fundamental matrix
Given: correspondences $x=(x,y,1)^T$ and $x'=(x',y',1)^T$
Constraint: $x'^T F x=0$
$$
(x',y',1)\begin{bmatrix}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{bmatrix}\begin{pmatrix}
x\\y\\1
\end{pmatrix}=0
$$
**Each pair of correspondences gives one equation (one constraint)**
At least 8 pairs of correspondences are needed to solve for the 9 elements of $F$ (The eight point algorithm)
We know $F$ needs to be singular/rank 2. How do we force it to be singular?
Solution: take SVD of the initial estimate and throw out the smallest singular value
$$
F=U\begin{bmatrix}
\sigma_1 & 0 \\
0 & \sigma_2 \\
0 & 0
\end{bmatrix}V^T
$$
## Structure from Motion
Not always uniquely solvable.
If we scale the entire scene by some factor $k$ and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points remain exactly the same:
$x\cong PX =(1/k P)(kX)$
Without a reference measurement, it is impossible to recover the absolute scale of the scene!
In general, if we transform the scene using a transformation $Q$ and apply the inverse transformation to the camera matrices, then the image observations do not change:
$x\cong PX =(P Q^{-1})(QX)$
### Types of Ambiguities
![Ambiguities in projection](https://notenextra.trance-0.com/CSE559A/Ambiguities_in_projection.png)
### Affine projection : more general than orthographic
A general affine projection is a 3D-to-2D linear mapping plus translation:
$$
P=\begin{bmatrix}
a_{11} & a_{12} & a_{13} & t_1 \\
a_{21} & a_{22} & a_{23} & t_2 \\
0 & 0 & 0 & 1
\end{bmatrix}=\begin{bmatrix}
A & t \\
0^T & 1
\end{bmatrix}
$$
In non-homogeneous coordinates:
$$
\begin{pmatrix}
x\\y\\1
\end{pmatrix}=\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{bmatrix}\begin{pmatrix}
X\\Y\\Z
\end{pmatrix}+\begin{pmatrix}
t_1\\t_2
\end{pmatrix}=AX+t
$$
### Affine Structure from Motion
Given: 𝑚 images of 𝑛 fixed 3D points such that
$$
x_{ij}=A_iX_j+t_i, \quad i=1,\dots,m, \quad j=1,\dots,n
$$
Problem: use the 𝑚𝑛 correspondences $x_{ij}$ to estimate 𝑚 projection matrices $A_i$ and translation vectors $t_i$, and 𝑛 points $X_j$
The reconstruction is defined up to an arbitrary affine transformation $Q$ (12 degrees of freedom):
$$
\begin{bmatrix}
A & t \\
0^T & 1
\end{bmatrix}\rightarrow\begin{bmatrix}
A & t \\
0^T & 1
\end{bmatrix}Q^{-1}, \quad \begin{pmatrix}X_j\\1\end{pmatrix}\rightarrow Q\begin{pmatrix}X_j\\1\end{pmatrix}
$$
How many constraints and unknowns for $m$ images and $n$ points?
$2mn$ constraints and $8m + 3n$ unknowns
To be able to solve this problem, we must have $2mn \geq 8m+3n-12$ (affine ambiguity takes away 12 dof)
E.g., for two views, we need four point correspondences

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB