restore search functionality

This commit is contained in:
Zheyuan Wu
2025-10-28 11:55:11 -05:00
parent 361745d658
commit 47a27d1987
3 changed files with 86 additions and 1 deletions

View File

@@ -0,0 +1,84 @@
# CSE5313 Coding and information theory for data science (Lecture 17)
## Shannon's coding Theorem
**Shannons coding theorem**: For a discrete memoryless channel with capacity $C$,
every rate $R < C = \max_{x\in \mathcal{X}} I(X; Y)$ is achievable.
### Computing Channel Capacity
$X$: channel input (per 1 channel use), $Y$: channel output (per 1 channel use).
Let the rate of the code be $\frac{\log_F |C|}{n}$ (or $\frac{k}{n}$ if it is linear).
The Binary Erasure Channel (BEC): analog of BSC, but the bits are lost (not corrupted).
Let $\alpha$ be the fraction of erased bits.
### Corollary: The capacity of the BEC is $C = 1 - \alpha$.
<details>
<summary>Proof</summary>
$$
\begin{aligned}
C&=\max_{x\in \mathcal{X}} I(X;Y)\\
&=\max_{x\in \mathcal{X}} (H(Y)-H(Y|X))\\
&=H(Y)-H(\alpha)
\end{aligned}
$$
Suppose we denote $Pr(X=1)\coloneqq p$.
$Pr(Y=0)=Pr(X=0)Pr(no erasure)=(1-p)(1-\alpha)$
$Pr(Y=1)=Pr(X=1)Pr(no erasure)=p(1-\alpha)$
$Pr(Y=*)=\alpha$
So,
$$
\begin{aligned}
H(Y)&=H((1-p)(1-\alpha),p(1-\alpha),\alpha)\\
&=(1-p)(1-\alpha)\log_2 ((1-p)(1-\alpha))+p(1-\alpha)\log_2 (p(1-\alpha))+\alpha\log_2 (\alpha)\\
&=H(\alpha)+(1-\alpha)H(p)
\end{aligned}
$$
So $I(X;Y)=H(Y)-H(Y|X)=H(\alpha)+(1-\alpha)H(p)-H(\alpha)=(1-\alpha)H(p)$
So $C=\max_{x\in \mathcal{X}} I(X;Y)=\max_{p\in [0,1]} (1-\alpha)H(p)=(1-\alpha)$
So the capacity of the BEC is $C = 1 - \alpha$.
</details>
### General interpretation of capacity
Recall $I(X;Y)=H(Y)-H(Y|X)$.
Edge case:
- If $H(X|Y)=0$, then output $Y$ reveals all information about input $X$.
- rate of $R=I(X;Y)=H(Y)$ is possible. (same as information compression)
- If $H(Y|X)=H(X)$, then $Y$ reveals no information about $X$.
- rate of $R=I(X;Y)=0$ no information is transferred.
> [!NOTE]
>
> Compression is transmission without noise.
## Side notes for Cryptography
Goal: Quantify the amount of information that is leaked to the eavesdropper.
- Let:
- $M$ be the message distribution.
- Let $Z$ be the cyphertext distribution.
- How much information is leaked about $m$ to the eavesdropper (who sees $operatorname{Enc}(m)$)?
- Idea: One-time pad.
### One-time pad

View File

@@ -20,4 +20,5 @@ export default {
CSE5313_L14: "CSE5313 Coding and information theory for data science (Lecture 14)",
CSE5313_L15: "CSE5313 Coding and information theory for data science (Lecture 15)",
CSE5313_L16: "CSE5313 Coding and information theory for data science (Exam Review)",
CSE5313_L17: "CSE5313 Coding and information theory for data science (Lecture 17)",
}