Update CSE5313_L24.md
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled

This commit is contained in:
Trance-0
2025-11-23 12:06:09 -06:00
parent 000922f9bd
commit 56e93bb007

View File

@@ -37,7 +37,6 @@ Need $P=SM$ worker nodes, and index each one by $s\in [0,S-1], n\in [0,M-1]$.
Worker node $(s,n)$ performs matrix multiplication $\tilde{A}_s^\top\cdot B_n$. Worker node $(s,n)$ performs matrix multiplication $\tilde{A}_s^\top\cdot B_n$.
$$ $$
\begin{bmatrix} \begin{bmatrix}
A_0^\top\\ A_0^\top\\
@@ -46,7 +45,7 @@ A_0^\top+A_1^\top
\end{bmatrix} \end{bmatrix}
\begin{bmatrix} \begin{bmatrix}
B_0 & B_1 B_0 & B_1
\enn{bmatrix} \end{bmatrix}
$$ $$
Need $S-M$ responses from each column. Need $S-M$ responses from each column.
@@ -71,7 +70,7 @@ A_0^\top+A_1^\top
\end{bmatrix} \end{bmatrix}
\begin{bmatrix} \begin{bmatrix}
B_0 & B_1 & B_0+B_1 B_0 & B_1 & B_0+B_1
\enn{bmatrix} \end{bmatrix}
$$ $$
Decodability depends on the pattern. Decodability depends on the pattern.
@@ -95,6 +94,10 @@ Corollary:
> >
> 1. $K_{1D-MDS}=P-S+M=\Theta(P)$ (linearly) > 1. $K_{1D-MDS}=P-S+M=\Theta(P)$ (linearly)
> 2. $K_{2D-MDS}=P-(S-M+1)^2+1$. > 2. $K_{2D-MDS}=P-(S-M+1)^2+1$.
> - Consider $S\times S$ bipartite graph with $(S-M+1)\times (S-M+1)$ complete subgraph.
> - There exists subgraph with all degrees larger than $S-M\implies$ not decodable.
> - On the other hand: Fewer than $(S-M+1)^2$ edges cannot form a subgraph with all degrees $>S-M$.
> - $K$ scales sub-linearly with $P$.
> 3. $K_{product}<P-M^2=S^2-M^2=\Theta(\sqrt{P})$ > 3. $K_{product}<P-M^2=S^2-M^2=\Theta(\sqrt{P})$
> >
> Our goal is to get rid of $P$. > Our goal is to get rid of $P$.
@@ -298,22 +301,44 @@ Suppose $P=(r+1)\cdot K$.
### Linear codes ### Linear codes
However, $f$ is a polynomial of degree $d$, not a linear transformation unless $d=1$. Recall previous linear computations (matrix-vector):
- $[\tilde{A}_1,\tilde{A}_2,\tilde{A}_3]=[A_1,A_2,A_1+A_2]$ is the corresponding codeword of $[A_1,A_2]$.
- Every worker node $i$ computes $f(\tilde{A}_i)=\tilde{A}_i x$.
- $[\tilde{A}_1x, \tilde{A}_2x, \tilde{A}_3x]=[A_1x,A_2x,A_1x+A_2x]$ is the corresponding codeword of $[A_1x,A_2x]$.
- This enables to decode $[A_1x,A_2x]$ from $[\tilde{A}_1x,\tilde{A}_2x,\tilde{A}_3 x]$.
However, $f$ is a **polynomial of degree $d$**, not a linear transformation unless $d=1$.
- $f(cX)\neq cf(X)$, where $c$ is a constant. - $f(cX)\neq cf(X)$, where $c$ is a constant.
- $f(X_1+X_2)\neq f(X_1)+f(X_2)$. - $f(X_1+X_2)\neq f(X_1)+f(X_2)$.
> [!CAUTION]
>
> $[f(\tilde{X}_1),f(\tilde{X}_2),\ldots,f(\tilde{X}_K)]$ is not the codeword corresponding to $[f(X_1),f(X_2),\ldots,f(X_K)]$ in any linear code.
Our goal is to create an encoder/decode such that: Our goal is to create an encoder/decode such that:
- Linear encoding: is the codeword of $[X_1,X_2,\ldots,X_K]$ for some linear code. - Linear encoding: is the codeword of $[X_1,X_2,\ldots,X_K]$ for some linear code.
- i.e., $[\tilde{X}_1,\tilde{X}_2,\ldots,\tilde{X}_K]=[X_1,X_2,\ldots,X_K]G$ for some generator matrix $G$.
- Every $\tilde{X}_i$ is some linear combination of $X_1,\ldots,X_K$.
- The $f(X_i)$ are decodable from some subset of $f(\tilde{X}_i)$'s. - The $f(X_i)$ are decodable from some subset of $f(\tilde{X}_i)$'s.
- Some of coded results are missing, erroneous.
- $X_i$'s are kept private. - $X_i$'s are kept private.
### Lagrange Coded Computing ### Lagrange Coded Computing
Let $\ell(z)$ be a polynomial whose evaluations at $\omega_1,\ldots,\omega_{K}$ are $X_1,\ldots,X_K$. Let $\ell(z)$ be a polynomial whose evaluations at $\omega_1,\ldots,\omega_{K}$ are $X_1,\ldots,X_K$.
Then every $f(X_i)=f(\ell(\omega_i))$ is an evaluation of polynomial $f\cicc \ell(z)$ at $\omega_i$. - That is, $\ell(\omega_i)=X_i$ for every $\omega_i\in \mathbb{F}, i\in [K]$.
Some example constructions:
Given $X_1,\ldots,X_K$ with corresponding $\omega_1,\ldots,\omega_K$
- $\ell(z)=\sum_{i=1}^K X_iL_i(z)$, where $L_i(z)=\prod_{j\in[K],j\neq i} \frac{z-\omega_j}{\omega_i-\omega_j}=\begin{cases} 0 & \text{if } j\neq i \\ 1 & \text{if } j=i \end{cases}$.
Then every $f(X_i)=f(\ell(\omega_i))$ is an evaluation of polynomial $f\circ \ell(z)$ at $\omega_i$.
If the master obtains the composition $h=f\circ \ell$, it can obtain every $f(X_i)=h(\omega_i)$. If the master obtains the composition $h=f\circ \ell$, it can obtain every $f(X_i)=h(\omega_i)$.
@@ -334,19 +359,19 @@ Need polynomial $\ell(z)$ such that:
Having obtained such $\ell$ we let $\tilde{X}_i=\ell(\alpha_i)$ for every $i\in [P]$. Having obtained such $\ell$ we let $\tilde{X}_i=\ell(\alpha_i)$ for every $i\in [P]$.
$\span{\tilde{X}_1,\tilde{X}_2,\ldots,\tilde{X}_P}=\span{\ell_1(x),\ell_2(x),\ldots,\ell_P(x)}$. $span{\tilde{X}_1,\tilde{X}_2,\ldots,\tilde{X}_P}=span{\ell_1(x),\ell_2(x),\ldots,\ell_P(x)}$.
Want $X_k=\ell(\omega_k)$ for every $k\in [K]$. Want $X_k=\ell(\omega_k)$ for every $k\in [K]$.
Tool: Lagrange interpolation. Tool: Lagrange interpolation.
- $\ell_k(z)=\prod_{i\neq k} \frac{z-\omega_j}{\omega_k-\omega_j}$. - $\ell_k(z)=\prod_{i\neq k} \frac{z-\omega_j}{\omega_k-\omega_j}$.
- $\ell(z)=1$ and $\ell_k(\omega_k)=0$ for every $j\neq k$. - $\ell_k(\omega_k)=1$ and $\ell_k(\omega_k)=0$ for every $j\neq k$.
- $\deg \ell(z)=K-1$. - $\deg \ell_k(z)=K-1$.
Let $\ell(z)=\sum_{k=1}^K X_k\ell_k(z)$. Let $\ell(z)=\sum_{k=1}^K X_k\ell_k(z)$.
- $\deg \ell=K-1$. - $\deg \ell\leq K-1$.
- $\ell(\omega_k)=X_k$ for every $k\in [K]$. - $\ell(\omega_k)=X_k$ for every $k\in [K]$.
Let $\tilde{X}_i=\ell(\alpha_i)=\sum_{k=1}^K X_k\ell_k(\alpha_i)$. Let $\tilde{X}_i=\ell(\alpha_i)=\sum_{k=1}^K X_k\ell_k(\alpha_i)$.