update name
This commit is contained in:
@@ -1 +1,19 @@
|
||||
# Lecture 14
|
||||
# Math 4121 Lecture 14
|
||||
|
||||
## Recap
|
||||
|
||||
### Hankel developedn Riemann's integrabilty criterion.
|
||||
|
||||
#### Definition
|
||||
|
||||
Given an interval $I\subset[a,b]$, $f:[a,b]\to\mathbb{R}$ the oscillation of $f$ at $I$ is
|
||||
|
||||
$$
|
||||
\omega(f,I) = \sup_I f - \inf_I f
|
||||
$$
|
||||
|
||||
#### Theorem
|
||||
|
||||
A bounded function $f$ is Riemann integrable if and only if
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user