updates?
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
@@ -1,4 +1,4 @@
|
|||||||
# Math 401, Fall 2025: Thesis notes, S4, Differential Forms
|
# Math 401, Fall 2025: Thesis notes, S5, Differential Forms
|
||||||
|
|
||||||
This note aim to investigate What is homology and cohomology?
|
This note aim to investigate What is homology and cohomology?
|
||||||
|
|
||||||
@@ -235,3 +235,7 @@ $$
|
|||||||
$$
|
$$
|
||||||
|
|
||||||
A tangent vector at $p\in M$ is the
|
A tangent vector at $p\in M$ is the
|
||||||
|
|
||||||
|
[2025.12.03]
|
||||||
|
|
||||||
|
Goal: Finish the remaining parts of this book
|
||||||
11
content/Math401/Extending_thesis/Math401_S6.md
Normal file
11
content/Math401/Extending_thesis/Math401_S6.md
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
# Math 401, Fall 2025: Thesis notes, S6, Algebraic Geometry
|
||||||
|
|
||||||
|
## Affine algebraic variety
|
||||||
|
|
||||||
|
The affine algebraic variety is the common zero set of a collection $\{F_i\}_{i\in I}$ of complex polynomials on complex n-space $\mathbb{C}^n$. We write
|
||||||
|
|
||||||
|
$$
|
||||||
|
V=\mathbb{V}(\{F_i\}_{i\in I})=\{z\in \mathbb{C}^n\vert F_i(z)=0\text{ for all } i\in I\}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Note that $I$ may not be countable or finite.
|
||||||
78
content/Math4201/Math4201_L38.md
Normal file
78
content/Math4201/Math4201_L38.md
Normal file
@@ -0,0 +1,78 @@
|
|||||||
|
# Math4201 Topology I (Lecture 38)
|
||||||
|
|
||||||
|
## Countability and separability
|
||||||
|
|
||||||
|
### Metrizable spaces
|
||||||
|
|
||||||
|
Let $\mathbb{R}^\omega$ be the set of all countable sequences of real numbers.
|
||||||
|
|
||||||
|
where the basis is defined
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mathcal{B}=\{\prod_{i=1}^\infty (a_i,b_i)\text{for all except for finitely many}(a_i,b_i)=\mathbb{R}\}
|
||||||
|
$$
|
||||||
|
|
||||||
|
#### Lemma $\mathbb{R}^\omega$ is metrizable
|
||||||
|
|
||||||
|
Consider the metric define on $\mathbb{R}^\omega$ by $D(\overline{x},\overline{y})=\sup\{\frac{\overline{d}(x_i,y_i)}{i}\}$
|
||||||
|
|
||||||
|
where $\overline{x}=(x_1,x_2,x_3,\cdots)$ and $\overline{y}=(y_1,y_2,y_3,\cdots)$, $\overline{d}=\min\{|x_i-y_i|,1\}$.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Sketch of proof</summary>
|
||||||
|
|
||||||
|
1. $D$ is a metric. exercise
|
||||||
|
|
||||||
|
2. $\forall \overline{x}\in \mathbb{R}^\omega$, $\forall \epsilon >0$, $\exists$ basis open set in product topology $U\subseteq B_D(\overline{x},\epsilon)$ containing $\overline{x}$.
|
||||||
|
|
||||||
|
Choose $N\geq \frac{1}{\epsilon}$, then $\forall n\geq N,\frac{\overline{d}(x_n,y_n)}{n}<\frac{1}{N}<\epsilon$
|
||||||
|
</details>
|
||||||
|
|
||||||
|
We will use the topological space above to prove the following theorem.
|
||||||
|
|
||||||
|
#### Theorem for metrizable spaces
|
||||||
|
|
||||||
|
If $X$ is a regular and second countable topological space, then $X$ is metrizable.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
|
||||||
|
<summary>Proof</summary>
|
||||||
|
|
||||||
|
We will show that there exists embedding $F:X\to \mathbb{R}^\omega$ such that $F$ is continuous, injective and if $Z=F(X)$, $F:X\to Z$ is a open map.
|
||||||
|
|
||||||
|
Recall that [regular and second countable spaces are normal](./Math4201_L36.md/#theorem-for-constructing-normal-spaces)
|
||||||
|
|
||||||
|
1. Since $X$ is regular, then 1 point sets in $X$ are closed.
|
||||||
|
2. $X$ is regular if and only if $\forall x\in U\subseteq X$, $U$ is open in $X$. There exists $V$ open in $X$ such that $x\in V\subseteq\overline{V}\subseteq U$.
|
||||||
|
|
||||||
|
Let $\{B_n\}$ be a countable basis for $X$ (by second countability).
|
||||||
|
|
||||||
|
Pass to $(n,m)$ such that $\overline{B_n}\subseteq B_m$.
|
||||||
|
|
||||||
|
By [Urysohn lemma](./Math4201_L37.md/#urysohn-lemma), there exists continuous function $g_{m,n}: X\to [0,1]$ such that $g_{m,n}(\overline{B_n})=\{1\}$ and $g_{m,n}(B_m)=\{0\}$.
|
||||||
|
|
||||||
|
Therefore, we have $\{g_{m,n}\}$ is a countable set of functions, where $\overline{B_n}\subseteq B_m$.
|
||||||
|
|
||||||
|
We claim that $\forall x_0\in U$ such that $U$ is open in $X$, there exists $k\in \mathbb{N}$ such that $f_k(\{x_0\})>0$ and $f_k(X-U)=0$.
|
||||||
|
|
||||||
|
Definition of basis implies that $\exists x_0\in B_m\subseteq U$
|
||||||
|
|
||||||
|
Note that since $X$ is regular, there exists $x_0\in B_n\subseteq \overline{B_n}\subseteq B_m$.
|
||||||
|
|
||||||
|
Choose $f_k=g_{m,n}$, then $f_k(\overline{B_n})=\{1\}$ and $f_k(B_n)=\{0\}$. So $f_k(x_0)=1$ since $x_0\in \overline{B_n}$.
|
||||||
|
|
||||||
|
So $F$ is **continuous** since each of the $f_k$ is continuous.
|
||||||
|
|
||||||
|
$F$ is **injective** since $x\neq y$ implies that there exists $k$, $f_k=g_{m,n}$ where $x\in \overline{B_n}\subseteq B_m$ such that $f_k(x)\neq f_k(y)$.
|
||||||
|
|
||||||
|
If $F(U)$ is open for all $U\subseteq X$, $U$ is open in $X$, then $F:X\to Z$ is homeomorphism.
|
||||||
|
|
||||||
|
We want to show that $\forall z_0\in F(U)$, there exists neighborhood $W$ of $z_0$, $z_0\in W\subseteq F(U)$.
|
||||||
|
|
||||||
|
We know that $\exists x_0\in F(x_0)$ such that $F(x_0)=z_0$.
|
||||||
|
|
||||||
|
We choose $N$ such that $f_N(\{x_0\})>0$ and $f_N(X-U)=0$, ($V\cap Z\subseteq F(U)$).
|
||||||
|
|
||||||
|
Let $V=\pi_N^{-1}((0,\infty))$. By construction, $V$ is open in $\mathbb{R}^\omega$. and $V\cap Z$ is open in $Z$ containing $z_0$.
|
||||||
|
|
||||||
|
</details>
|
||||||
@@ -41,4 +41,5 @@ export default {
|
|||||||
Math4201_L35: "Topology I (Lecture 35)",
|
Math4201_L35: "Topology I (Lecture 35)",
|
||||||
Math4201_L36: "Topology I (Lecture 36)",
|
Math4201_L36: "Topology I (Lecture 36)",
|
||||||
Math4201_L37: "Topology I (Lecture 37)",
|
Math4201_L37: "Topology I (Lecture 37)",
|
||||||
|
Math4201_L38: "Topology I (Lecture 38)",
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user