This commit is contained in:
Zheyuan Wu
2026-02-02 13:01:07 -06:00
parent 778538cce0
commit 6a0b35bb28
2 changed files with 146 additions and 0 deletions

View File

@@ -0,0 +1,145 @@
# Math4202 Topology II (Lecture 9)
## Algebraic Topology
### Path homotopy
Consider the space of paths up to homotopy equivalence.
$$
\operatorname{Path}/\simeq_p(X) =\Pi_1(X)
$$
We want to impose some group structure on $\operatorname{Path}/\simeq_p(X)$.
Consider the $*$ operation on $\operatorname{Path}/\simeq_p(X)$.
Let $f,g:[0,1]\to X$ be two paths, where $f(0)=a$, $f(1)=g(0)=b$ and $g(1)=c$.
$$
f*g:[0,1]\to X,\quad f*g(t)=\begin{cases}
f(2t) & 0\leq t\leq \frac{1}{2}\\
g(2t-1) & \frac{1}{2}\leq t\leq 1
\end{cases}
$$
This connects our two paths.
#### Definition for product of paths
Given $f$ a path in $X$ from $x_0$ to $x_1$ and $g$ a path in $X$ from $x_1$ to $x_2$.
Define the product $f*g$ of $f$ and $g$ to be the map $h:[0,1]\to X$.
#### Definition for equivalent classes of paths
$\Pi_1(X,x)$ is the equivalent classes of paths starting and ending at $x$.
On $\Pi_1(X,x)$,, we define $\forall [f],[g],[f]*[g]=[f*g]$.
$$
[f]\coloneqq \{f_i:[0,1]\to X|f_0(0)=f(0),f_i(1)=f(1)\}
$$
#### Lemma
If we have some path $k:X\to Y$ is a continuous map, and if $F$ is path homotopy between $f$ and $f'$ in $X$, then $k\circ F$ is path homotopy between $k\circ f$ and $k\circ f'$ in $Y$.
If $k:X\to Y$ is a continuous map, and $f,g$ are two paths in $X$ with $f(1)=g(0)$, then
$$
(k\circ f)*(k\circ g)=k\circ(f*g)
$$
<details>
<summary>Proof</summary>
We check the definition of path homotopy.
$k\circ F:I\times I\to Y$ is continuous.
$k\circ F(s,0)=k(F(s,0))=k(f(s))=k\circ f(s)$.
$k\circ F(s,1)=k(F(s,1))=k(f'(s))=k\circ f'(s)$.
$k\circ F(0,t)=k(F(0,t))=k(f(0))=k(x_0$.
$k\circ F(1,t)=k(F(1,t))=k(f'(1))=k(x_1)$.
Therefore $k\circ F$ is path homotopy between $k\circ f$ and $k\circ f'$ in $Y$.
---
For the second part of the lemma, we proceed from the definition.
$$
(k\circ f)*(k\circ g)(t)=\begin{cases}
k\circ f(2t) & 0\leq t\leq \frac{1}{2}\\
k\circ g(2t-1) & \frac{1}{2}\leq t\leq 1
\end{cases}
$$
and
$$
k\circ(f*g)=k(f*g(t))=k\left(\begin{cases}
f(2t) & 0\leq t\leq \frac{1}{2}\\
g(2t-1) & \frac{1}{2}\leq t\leq 1
\end{cases}\right)=\begin{cases}
k(f(2t))=k\circ f(2t) & 0\leq t\leq \frac{1}{2}\\
k(g(2t-1))=k\circ g(2t-1) & \frac{1}{2}\leq t\leq 1
\end{cases}
$$
</details>
#### Theorem for properties of product of paths
1. If $f\simeq_p f_1, g\simeq_p g_1$, then $f*g\simeq_p f_1*g_1$. (Product is well-defined)
2. $([f]*[g])*[h]=[f]*([g]*[h])$. (Associativity)
3. Let $e_{x_0}$ be the constant path from $x_0$ to $x_0$, $e_{x_1}$ be the constant path from $x_1$ to $x_1$. Suppose $f$ is a path from $x_0$ to $x_1$.
$$
[e_{x_0}]*[f]=[f],\quad [f]*[e_{x_1}]=[f]
$$
(Right and left identity)
4. Given $f$ in $X$ a path from $x_0$ to $x_1$, we define $\bar{f}$ to be the path from $x_1$ to $x_0$ where $\bar{f}(t)=f(1-t)$.
$$
f*\bar{f}=e_{x_0},\quad \bar{f}*f=e_{x_1}
$$
$$
[f]*[\bar{f}]=[e_{x_0}],\quad [\bar{f}]*[f]=[e_{x_1}]
$$
<details>
<summary>Proof</summary>
(1) If $f\simeq_p f_1$, $g\simeq_p g_1$, then $f*g\simeq_p f_1*g_1$.
Let $F$ be homotopy between $f$ and $f_1$, $G$ be homotopy between $g$ and $g_1$.
We can define
$$
F*G:[0,1]\times [0,1]\to X,\quad F*G(s,t)=\left(F(-,t)*G(-,t)\right)(s)=\begin{cases}
F(2s,t) & 0\leq s\leq \frac{1}{2}\\
G(2s-1,t) & \frac{1}{2}\leq s\leq 1
\end{cases}
$$
$F*G$ is a homotopy between $f*g$ and $f_1*g_1$.
We can check this by enumerating the cases from definition of homotopy.
---
Continue next time.
</details>
#### Definition for the fundamental group
The fundamental group of $X$ at $x$ is defined to be
$$
(\Pi_1(X,x),*)
$$

View File

@@ -11,4 +11,5 @@ export default {
Math4202_L6: "Topology II (Lecture 6)",
Math4202_L7: "Topology II (Lecture 7)",
Math4202_L8: "Topology II (Lecture 8)",
Math4202_L9: "Topology II (Lecture 9)",
}