This commit is contained in:
Zheyuan Wu
2025-03-25 17:28:12 -05:00
parent 8fc893670a
commit 6f838c6fcd
4 changed files with 199 additions and 0 deletions

View File

@@ -0,0 +1,188 @@
# CSE559A Lecture 17
## Local Features
### Types of local features
#### Edge
Goal: Identify sudden changes in image intensity
Generate edge map as human artists.
An edge is a place of rapid change in the image intensity function.
Take the absolute value of the first derivative of the image intensity function.
For 2d functions, $\frac{\partial f}{\partial x}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$
For discrete images data, $\frac{\partial f}{\partial x}\approx \frac{f(x+1)-f(x)}{1}$
Run convolution with kernel $[1,0,-1]$ to get the first derivative in the x direction, without shifting. (generic kernel is $[1,-1]$)
Prewitt operator:
$$
M_x=\begin{bmatrix}
1 & 0 & -1 \\
1 & 0 & -1 \\
1 & 0 & -1 \\
\end{bmatrix}
\quad
M_y=\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1 \\
\end{bmatrix}
$$
Sobel operator:
$$
M_x=\begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{bmatrix}
\quad
M_y=\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1 \\
\end{bmatrix}
$$
Roberts operator:
$$
M_x=\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\quad
M_y=\begin{bmatrix}
0 & 1 \\
-1 & 0 \\
\end{bmatrix}
$$
Image gradient:
$$
\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
$$
Gradient magnitude:
$$
||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}
$$
Gradient direction:
$$
\theta = \tan^{-1}\left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}\right)
$$
The gradient points in the direction of the most rapid increase in intensity.
> Application: Gradient-domain image editing
>
> Goal: solve for pixel values in the target region to match gradients of the source region while keeping the rest of the image unchanged.
>
> [Poisson Image Editing](http://www.cs.virginia.edu/~connelly/class/2014/comp_photo/proj2/poisson.pdf)
Noisy edge detection:
When the intensity function is very noisy, we can use a Gaussian smoothing filter to reduce the noise before taking the gradient.
Suppose pixels of the true image $f_{i,j}$ are corrupted by Gaussian noise $n_{i,j}$ with mean 0 and variance $\sigma^2$.
Then the noisy image is $g_{i,j}=(f_{i,j}+n_{i,j})-(f_{i,j+1}+n_{i,j+1})\approx N(0,2\sigma^2)$
To find edges, look for peaks in $\frac{d}{dx}(f\circ g)$ where $g$ is the Gaussian smoothing filter.
or we can directly use the Derivative of Gaussian (DoG) filter:
$$
\frac{d}{dx}g(x,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}
$$
##### Separability of Gaussian filter
A Gaussian filter is separable if it can be written as a product of two 1D filters.
$$
\frac{d}{dx}g(x,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}
\quad \frac{d}{dy}g(y,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{y^2}{2\sigma^2}}
$$
##### Separable Derivative of Gaussian (DoG) filter
$$
\frac{d}{dx}g(x,y)\propto -x\exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)
\quad \frac{d}{dy}g(x,y)\propto -y\exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)
$$
##### Derivative of Gaussian: Scale
Using Gaussian derivatives with different values of 𝜎 finds structures at different scales or frequencies
(Take the hybrid image as an example)
##### Canny edge detector
1. Smooth the image with a Gaussian filter
2. Compute the gradient magnitude and direction of the smoothed image
3. Thresholding gradient magnitude
4. Non-maxima suppression
- For each location `q` above the threshold, check that the gradient magnitude is higher than at adjacent points `p` and `r` in the direction of the gradient
5. Thresholding the non-maxima suppressed gradient magnitude
6. Hysteresis thresholding
- Use two thresholds: high and low
- Start with a seed edge pixel with a gradient magnitude greater than the high threshold
- Follow the gradient direction to find all connected pixels with a gradient magnitude greater than the low threshold
##### Top-down segmentation
Data-driven top-down segmentation:
#### Interest point
Key point matching:
1. Find a set of distinctive keypoints in the image
2. Define a region of interest around each keypoint
3. Compute a local descriptor from the normalized region
4. Match local descriptors between images
Characteristic of good features:
- Repeatability
- The same feature can be found in several images despite geometric and photometric transformations
- Saliency
- Each feature is distinctive
- Compactness and efficiency
- Many fewer features than image pixels
- Locality
- A feature occupies a relatively small area of the image; robust to clutter and occlusion
##### Harris corner detector
### Applications of local features
#### Image alignment
#### 3D reconstruction
#### Motion tracking
#### Robot navigation
#### Indexing and database retrieval
#### Object recognition

View File

@@ -19,4 +19,5 @@ export default {
CSE559A_L14: "Computer Vision (Lecture 14)",
CSE559A_L15: "Computer Vision (Lecture 15)",
CSE559A_L16: "Computer Vision (Lecture 16)",
CSE559A_L17: "Computer Vision (Lecture 17)",
}

View File

@@ -0,0 +1,9 @@
# Math4121 Exam 2 Review
Range: Chapter 2-4 of Bressoud's A Radical Approach to Lebesgue's Theory of Integration
## Chapter 2
## Chapter 3
## Chapter 4

View File

@@ -3,6 +3,7 @@ export default {
"---":{
type: 'separator'
},
Exam_reviews: "Exam reviews",
Math4121_L1: "Introduction to Lebesgue Integration (Lecture 1)",
Math4121_L2: "Introduction to Lebesgue Integration (Lecture 2)",
Math4121_L3: "Introduction to Lebesgue Integration (Lecture 3)",