update
This commit is contained in:
188
pages/CSE559A/CSE559A_L17.md
Normal file
188
pages/CSE559A/CSE559A_L17.md
Normal file
@@ -0,0 +1,188 @@
|
|||||||
|
# CSE559A Lecture 17
|
||||||
|
|
||||||
|
## Local Features
|
||||||
|
|
||||||
|
### Types of local features
|
||||||
|
|
||||||
|
#### Edge
|
||||||
|
|
||||||
|
Goal: Identify sudden changes in image intensity
|
||||||
|
|
||||||
|
Generate edge map as human artists.
|
||||||
|
|
||||||
|
An edge is a place of rapid change in the image intensity function.
|
||||||
|
|
||||||
|
Take the absolute value of the first derivative of the image intensity function.
|
||||||
|
|
||||||
|
For 2d functions, $\frac{\partial f}{\partial x}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$
|
||||||
|
|
||||||
|
For discrete images data, $\frac{\partial f}{\partial x}\approx \frac{f(x+1)-f(x)}{1}$
|
||||||
|
|
||||||
|
Run convolution with kernel $[1,0,-1]$ to get the first derivative in the x direction, without shifting. (generic kernel is $[1,-1]$)
|
||||||
|
|
||||||
|
Prewitt operator:
|
||||||
|
|
||||||
|
$$
|
||||||
|
M_x=\begin{bmatrix}
|
||||||
|
1 & 0 & -1 \\
|
||||||
|
1 & 0 & -1 \\
|
||||||
|
1 & 0 & -1 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
\quad
|
||||||
|
M_y=\begin{bmatrix}
|
||||||
|
1 & 1 & 1 \\
|
||||||
|
0 & 0 & 0 \\
|
||||||
|
-1 & -1 & -1 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
$$
|
||||||
|
Sobel operator:
|
||||||
|
|
||||||
|
$$
|
||||||
|
M_x=\begin{bmatrix}
|
||||||
|
1 & 0 & -1 \\
|
||||||
|
2 & 0 & -2 \\
|
||||||
|
1 & 0 & -1 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
\quad
|
||||||
|
M_y=\begin{bmatrix}
|
||||||
|
1 & 2 & 1 \\
|
||||||
|
0 & 0 & 0 \\
|
||||||
|
-1 & -2 & -1 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
$$
|
||||||
|
Roberts operator:
|
||||||
|
|
||||||
|
$$
|
||||||
|
M_x=\begin{bmatrix}
|
||||||
|
1 & 0 \\
|
||||||
|
0 & -1 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
\quad
|
||||||
|
M_y=\begin{bmatrix}
|
||||||
|
0 & 1 \\
|
||||||
|
-1 & 0 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Image gradient:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
|
||||||
|
$$
|
||||||
|
|
||||||
|
Gradient magnitude:
|
||||||
|
|
||||||
|
$$
|
||||||
|
||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Gradient direction:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\theta = \tan^{-1}\left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}\right)
|
||||||
|
$$
|
||||||
|
|
||||||
|
The gradient points in the direction of the most rapid increase in intensity.
|
||||||
|
|
||||||
|
> Application: Gradient-domain image editing
|
||||||
|
>
|
||||||
|
> Goal: solve for pixel values in the target region to match gradients of the source region while keeping the rest of the image unchanged.
|
||||||
|
>
|
||||||
|
> [Poisson Image Editing](http://www.cs.virginia.edu/~connelly/class/2014/comp_photo/proj2/poisson.pdf)
|
||||||
|
|
||||||
|
Noisy edge detection:
|
||||||
|
|
||||||
|
When the intensity function is very noisy, we can use a Gaussian smoothing filter to reduce the noise before taking the gradient.
|
||||||
|
|
||||||
|
Suppose pixels of the true image $f_{i,j}$ are corrupted by Gaussian noise $n_{i,j}$ with mean 0 and variance $\sigma^2$.
|
||||||
|
Then the noisy image is $g_{i,j}=(f_{i,j}+n_{i,j})-(f_{i,j+1}+n_{i,j+1})\approx N(0,2\sigma^2)$
|
||||||
|
|
||||||
|
To find edges, look for peaks in $\frac{d}{dx}(f\circ g)$ where $g$ is the Gaussian smoothing filter.
|
||||||
|
|
||||||
|
or we can directly use the Derivative of Gaussian (DoG) filter:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{d}{dx}g(x,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
##### Separability of Gaussian filter
|
||||||
|
|
||||||
|
A Gaussian filter is separable if it can be written as a product of two 1D filters.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{d}{dx}g(x,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}
|
||||||
|
\quad \frac{d}{dy}g(y,\sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{y^2}{2\sigma^2}}
|
||||||
|
$$
|
||||||
|
|
||||||
|
##### Separable Derivative of Gaussian (DoG) filter
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{d}{dx}g(x,y)\propto -x\exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)
|
||||||
|
\quad \frac{d}{dy}g(x,y)\propto -y\exp\left(-\frac{x^2+y^2}{2\sigma^2}\right)
|
||||||
|
$$
|
||||||
|
|
||||||
|
##### Derivative of Gaussian: Scale
|
||||||
|
|
||||||
|
Using Gaussian derivatives with different values of 𝜎 finds structures at different scales or frequencies
|
||||||
|
|
||||||
|
(Take the hybrid image as an example)
|
||||||
|
|
||||||
|
##### Canny edge detector
|
||||||
|
|
||||||
|
1. Smooth the image with a Gaussian filter
|
||||||
|
2. Compute the gradient magnitude and direction of the smoothed image
|
||||||
|
3. Thresholding gradient magnitude
|
||||||
|
4. Non-maxima suppression
|
||||||
|
- For each location `q` above the threshold, check that the gradient magnitude is higher than at adjacent points `p` and `r` in the direction of the gradient
|
||||||
|
5. Thresholding the non-maxima suppressed gradient magnitude
|
||||||
|
6. Hysteresis thresholding
|
||||||
|
- Use two thresholds: high and low
|
||||||
|
- Start with a seed edge pixel with a gradient magnitude greater than the high threshold
|
||||||
|
- Follow the gradient direction to find all connected pixels with a gradient magnitude greater than the low threshold
|
||||||
|
|
||||||
|
##### Top-down segmentation
|
||||||
|
|
||||||
|
Data-driven top-down segmentation:
|
||||||
|
|
||||||
|
#### Interest point
|
||||||
|
|
||||||
|
Key point matching:
|
||||||
|
|
||||||
|
1. Find a set of distinctive keypoints in the image
|
||||||
|
2. Define a region of interest around each keypoint
|
||||||
|
3. Compute a local descriptor from the normalized region
|
||||||
|
4. Match local descriptors between images
|
||||||
|
|
||||||
|
Characteristic of good features:
|
||||||
|
|
||||||
|
- Repeatability
|
||||||
|
- The same feature can be found in several images despite geometric and photometric transformations
|
||||||
|
- Saliency
|
||||||
|
- Each feature is distinctive
|
||||||
|
- Compactness and efficiency
|
||||||
|
- Many fewer features than image pixels
|
||||||
|
- Locality
|
||||||
|
- A feature occupies a relatively small area of the image; robust to clutter and occlusion
|
||||||
|
|
||||||
|
##### Harris corner detector
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
### Applications of local features
|
||||||
|
|
||||||
|
#### Image alignment
|
||||||
|
|
||||||
|
#### 3D reconstruction
|
||||||
|
|
||||||
|
#### Motion tracking
|
||||||
|
|
||||||
|
#### Robot navigation
|
||||||
|
|
||||||
|
#### Indexing and database retrieval
|
||||||
|
|
||||||
|
#### Object recognition
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -19,4 +19,5 @@ export default {
|
|||||||
CSE559A_L14: "Computer Vision (Lecture 14)",
|
CSE559A_L14: "Computer Vision (Lecture 14)",
|
||||||
CSE559A_L15: "Computer Vision (Lecture 15)",
|
CSE559A_L15: "Computer Vision (Lecture 15)",
|
||||||
CSE559A_L16: "Computer Vision (Lecture 16)",
|
CSE559A_L16: "Computer Vision (Lecture 16)",
|
||||||
|
CSE559A_L17: "Computer Vision (Lecture 17)",
|
||||||
}
|
}
|
||||||
|
|||||||
9
pages/Math4121/Exam_reviews/Math4121_E2.md
Normal file
9
pages/Math4121/Exam_reviews/Math4121_E2.md
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
# Math4121 Exam 2 Review
|
||||||
|
|
||||||
|
Range: Chapter 2-4 of Bressoud's A Radical Approach to Lebesgue's Theory of Integration
|
||||||
|
|
||||||
|
## Chapter 2
|
||||||
|
|
||||||
|
## Chapter 3
|
||||||
|
|
||||||
|
## Chapter 4
|
||||||
@@ -3,6 +3,7 @@ export default {
|
|||||||
"---":{
|
"---":{
|
||||||
type: 'separator'
|
type: 'separator'
|
||||||
},
|
},
|
||||||
|
Exam_reviews: "Exam reviews",
|
||||||
Math4121_L1: "Introduction to Lebesgue Integration (Lecture 1)",
|
Math4121_L1: "Introduction to Lebesgue Integration (Lecture 1)",
|
||||||
Math4121_L2: "Introduction to Lebesgue Integration (Lecture 2)",
|
Math4121_L2: "Introduction to Lebesgue Integration (Lecture 2)",
|
||||||
Math4121_L3: "Introduction to Lebesgue Integration (Lecture 3)",
|
Math4121_L3: "Introduction to Lebesgue Integration (Lecture 3)",
|
||||||
|
|||||||
Reference in New Issue
Block a user