partial updates for review, and fix typos

This commit is contained in:
Zheyuan Wu
2025-10-09 23:53:23 -05:00
parent f9c5889564
commit 74dcdc04dc
5 changed files with 224 additions and 6 deletions

View File

@@ -2,7 +2,7 @@
## Convergence of sequences
Let $X$ be a topological space and $\{x_n\}_{n\in\mathbb{N}_+}$ be a sequence of points in $X$. WE say $x_n\to x$ as $n\to \infty$ ($x_n$ converges to $x$ as $n\to \infty$)
Let $(X,\mathcal{T})$ be a topological space and $\{x_n\}_{n\in\mathbb{N}_+}$ be a sequence of points in $X$. We say $x_n\to x$ as $n\to \infty$ ($x_n$ converges to $x$ as $n\to \infty$)
if for any open neighborhood $U$ of $x$, there exists $N\in\mathbb{N}_+$ such that $\forall n\geq N, x_n\in U$.