fix typo and formatting errors
This commit is contained in:
@@ -1 +1,93 @@
|
||||
# Math 4201 Exam 1 review
|
||||
# Math 4201 Exam 1 review
|
||||
|
||||
> [!NOTE]
|
||||
>
|
||||
> This is a review for definitions we covered in the classes. It may serve as a cheat sheet for the exam if you are allowed to use it.
|
||||
|
||||
The exam will have 5 problems, roughly covering the following types of questions:
|
||||
|
||||
- Define concepts from class (e.g. what is the definition of the interior of a set?)
|
||||
- Give an example of a space/map which satisfies/does not satisfy a certain property (e.g. give an example of a map that is not continuous.)
|
||||
- Proofs from the lectures
|
||||
- Homework problems
|
||||
- A new problem at the same level of difficulty as homework problems
|
||||
|
||||
## Topological space
|
||||
|
||||
### Basic definitions
|
||||
|
||||
#### Definition for topological space
|
||||
|
||||
A topological space is a pair of set $X$ and a collection of subsets of $X$, denoted by $\mathcal{T}$ (imitates the set of "open sets" in $X$), satisfying the following axioms:
|
||||
|
||||
1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$
|
||||
2. $\mathcal{T}$ is closed with respect to arbitrary unions. This means, for any collection of open sets $\{U_\alpha\}_{\alpha \in I}$, we have $\bigcup_{\alpha \in I} U_\alpha \in \mathcal{T}$
|
||||
3. $\mathcal{T}$ is closed with respect to finite intersections. This means, for any finite collection of open sets $\{U_1, U_2, \ldots, U_n\}$, we have $\bigcap_{i=1}^n U_i \in \mathcal{T}$
|
||||
|
||||
#### Definition of open set
|
||||
|
||||
$U\subseteq X$ is an open set if $U\in \mathcal{T}$
|
||||
|
||||
#### Definition of closed set
|
||||
|
||||
$Z\subseteq X$ is a closed set if $X\setminus Z\in \mathcal{T}$
|
||||
|
||||
### Basis
|
||||
|
||||
#### Definition of topological basis
|
||||
|
||||
For a set $X$, a topology basis, denoted by $\mathcal{B}$, is a collection of subsets of $X$, such that the following properties are satisfied:
|
||||
|
||||
1. For any $x \in X$, there exists a $B \in \mathcal{B}$ such that $x \in B$ (basis covers the whole space)
|
||||
2. If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there exists a $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$ (every non-empty intersection of basis elements are also covered by a basis element)
|
||||
|
||||
#### Definition of topology generated by basis
|
||||
|
||||
Let $\mathcal{B}$ be a basis for a topology on a set $X$. Then the topology generated by $\mathcal{B}$ is defined by the set as follows:
|
||||
|
||||
$$
|
||||
\mathcal{T}_{\mathcal{B}} \coloneqq \{ U \subseteq X \mid \forall x\in U, \exists B\in \mathcal{B} \text{ such that } x\in B\subseteq U \}
|
||||
$$
|
||||
|
||||
> This is basically a closure of $\mathcal{B}$ under arbitrary unions and finite intersections
|
||||
|
||||
#### Lemma of topology generated by basis
|
||||
|
||||
$U\in \mathcal{T}_{\mathcal{B}}\iff \exists \{B_\alpha\}_{\alpha \in I}\subseteq \mathcal{B}$ such that $U=\bigcup_{\alpha \in I} B_\alpha$
|
||||
|
||||
#### Definition of basis generated from a topology
|
||||
|
||||
Let $(X, \mathcal{T})$ be a topological space. Then the basis generated from a topology is $\mathcal{C}\subseteq \mathcal{B}$ such that $\forall U\in \mathcal{T}$, $\forall x\in U$, $\exists B\in \mathcal{C}$ such that $x\in B\subseteq U$.
|
||||
|
||||
#### Definition of subbasis of topology
|
||||
|
||||
A subbasis of a topology is a collection $\mathcal{S}\subseteq \mathcal{T}$ such that $\bigcup_{U\in \mathcal{S}} U=X$.
|
||||
|
||||
#### Definition of topology generated by subbasis
|
||||
|
||||
Let $\mathcal{S}\subseteq \mathcal{T}$ be a subbasis of a topology on $X$, then the basis generated by such subbasis is the closure of finite intersection of $\mathcal{S}$
|
||||
|
||||
$$
|
||||
\mathcal{B}_{\mathcal{S}} \coloneqq \{B\mid B\text{ is the intersection of a finite number of elements of }\mathcal{S}\}
|
||||
$$
|
||||
|
||||
Then the topology generated by $\mathcal{B}_{\mathcal{S}}$ is the subbasis topology denoted by $\mathcal{T}_{\mathcal{S}}$.
|
||||
|
||||
Note that all open set with respect to $\mathcal{T}_{\mathcal{S}}$ can be written as a union of finitely intersections of elements of $\mathcal{S}$
|
||||
|
||||
### Comparing topologies
|
||||
|
||||
#### Definition of finer and coarser topology
|
||||
|
||||
Let $(X,\mathcal{T})$ and $(X,\mathcal{T}')$ be topological spaces. Then $\mathcal{T}$ is finer than $\mathcal{T}'$ if $\mathcal{T}'\subseteq \mathcal{T}$. $\mathcal{T}$ is coarser than $\mathcal{T}'$ if $\mathcal{T}\subseteq \mathcal{T}'$.
|
||||
|
||||
#### Lemma of comparing basis
|
||||
|
||||
Let $(X,\mathcal{T})$ and $(X,\mathcal{T}')$ be topological spaces with basis $\mathcal{B}$ and $\mathcal{B}'$. Then $\mathcal{T}$ is finer than $\mathcal{T}'$ if and only if for any $x\in X$, $x\in B'$, $B'\in \mathcal{B}'$, there exists $B\in \mathcal{B}$, such that $x\in B$ and $x\in B\subseteq B'$.
|
||||
|
||||
### Product space
|
||||
|
||||
#### Definition of cartesian product
|
||||
|
||||
Let $X,Y$ be sets. The cartesian product of $X$ and $Y$ is the set of all ordered pairs $(x,y)$ where $x\in X$ and $y\in Y$, denoted by $X\times Y$.
|
||||
|
||||
|
||||
@@ -119,7 +119,7 @@ Then $Z$ is a closed subset of $(\operatorname{Map}(X,Y),\rho)$.
|
||||
|
||||
We need to show that $\overline{Z}=Z$.
|
||||
|
||||
Since $\operatorname{Map}(X,Y)$ is a metric space, this is equivalent to showing that: $f_n:X\to Y\in Z$ continuous,
|
||||
Since $\operatorname{Map}(X,Y)$ is a metric space, this is equivalent to showing that: Let $f_n:X\to Y\in Z$ be a sequence of continuous maps,
|
||||
|
||||
Which is to prove the uniform convergence,
|
||||
|
||||
@@ -127,28 +127,33 @@ $$
|
||||
f_n \to f \in \operatorname{Map}(X,Y)
|
||||
$$
|
||||
|
||||
Then we want to show that $f$ is continuous.
|
||||
Then we want to show that $f$ is also continuous.
|
||||
|
||||
Let $B_r(y)$ be an arbitrary ball in $Y$, it suffices to show that $f^{-1}(B_r(y))$ is open in $X$.
|
||||
It is to show that for any open subspace $V$ of $Y$, $f^{-1}(V)$ is open in $X$.
|
||||
|
||||
Take $N$ to be large enough such that for $n\geq N$, we have
|
||||
Take $x_0\in f^{-1}(V)$, we'd like to show that there is an open neighborhood $U$ of $x_0$ such that $U\subseteq f^{-1}(V)$.
|
||||
|
||||
$$
|
||||
\rho(f_n(x), f(x)) < \frac{r}{3}
|
||||
$$
|
||||
Since $x_0\in f^{-1}(V)$, then $f(x_0)\in V$. By metric definition, there is $r>0$ such that $B_r(f(x_0))\subseteq V$.
|
||||
|
||||
In particular, this holds for $n=N$. So we have
|
||||
Take $N$ to be large enough such $\rho(f_N(x), f(x)) < \frac{r}{3}$
|
||||
|
||||
$$
|
||||
d(f_N(x), f(x)) < \frac{r}{3},\forall x\in X
|
||||
$$
|
||||
So $\forall x\in X$, $d(f(x),f_N(x))<\frac{r}{3}$
|
||||
|
||||
Take $x_0\in f^{-1}(B_r(y))$, we'd like to show that there is an open ball around $x_0$ in $f^{-1}(B_r(y))$.
|
||||
Since $f_N$ is continuous, $f_N^{-1}(B_{r/3}(f(x_0)))$ is an open set $U\subseteq X$ containing $x_0$.
|
||||
|
||||
Since $f_N$ is continuous, $f^{-1}_N(B_{\frac{r}{3}}(y))$ is open in $X$.
|
||||
Take $x\in U$, $d(f(x),f(x_0))<d(f(x),f_N(x_0))+d(f_N(x),f_N(x_0))+d(f_N(x_0),f(x_0))$ using triangle inequality.
|
||||
|
||||
$d(f(x_0), f(x_0))<\frac{r}{3}$
|
||||
Note that,
|
||||
|
||||
continue the proof in bonus video
|
||||
$d(f(x),f_N(x))<\frac{r}{3}$ (using $N$ large enough),
|
||||
|
||||
$d(f_N(x),f_N(x_0))<\frac{r}{3}$ (using $x\in U$, then $f_N(x)\in B_{r/3}(f_N(x_0))$, so $d(f_N(x),f_N(x_0))<\frac{r}{3}$),
|
||||
|
||||
$d(f_N(x_0),f(x_0))<\frac{r}{3}$ (using $N$ large enough),
|
||||
|
||||
So $d(f(x),f(x_0))<\frac{r}{3}+\frac{r}{3}+\frac{r}{3}=r$.
|
||||
|
||||
So $f(x)\in B_r(f(x_0))\implies x\in f^{-1}(B_r(f(x_0)))\implies x\in f^{-1}(V)\implies U\subseteq f^{-1}(V)$.
|
||||
|
||||
So $f^{-1}(V)$ is open in $X$.
|
||||
</details>
|
||||
@@ -1,4 +1,4 @@
|
||||
# Math 4201 Topology (Lecture 18)
|
||||
# Math4201 Topology I (Lecture 18)
|
||||
|
||||
## Quotient topology
|
||||
|
||||
|
||||
@@ -20,7 +20,9 @@ The elements of $\mathcal{T}$ are called **open sets**.
|
||||
|
||||
The topological space is denoted by $(X, \mathcal{T})$.
|
||||
|
||||
#### Examples
|
||||
<details>
|
||||
|
||||
<summary>Examples of topological spaces</summary>
|
||||
|
||||
Trivial topology: Let $X$ be arbitrary. The trivial topology is $\mathcal{T}_0 = \{\emptyset, X\}$
|
||||
|
||||
@@ -40,12 +42,18 @@ $\mathcal{T}_2 = \{\emptyset, \{a\}, \{a,b\}\}$
|
||||
|
||||
$\mathcal{T}_3 = \{\emptyset, \{b\}, \{a,b\}\}$
|
||||
|
||||
Non-examples:
|
||||
</details>
|
||||
|
||||
<details>
|
||||
|
||||
<summary>Non-example of topological space</summary>
|
||||
|
||||
Let $X=\{a,b,c\}$
|
||||
|
||||
The set $\mathcal{T}_1=\{\emptyset, \{a\}, \{b\}, \{a,b,c\}\}$ is not a topology because it is not closed under union $\{a\} \cup \{b\} = \{a,b\} \notin \mathcal{T}_1$
|
||||
|
||||
</details>
|
||||
|
||||
#### Definition of Complement finite topology
|
||||
|
||||
Let $X$ be arbitrary. The complement finite topology is $\mathcal{T}\coloneqq \{U\subseteq X|X\setminus U \text{ is finite}\}\cup \{\emptyset\}$
|
||||
|
||||
@@ -12,7 +12,7 @@ Let $X$ be a set. A basis for a topology on $X$ is a collection $\mathcal{B}$ (e
|
||||
2. $\forall B_1,B_2\in \mathcal{B}$, $\forall x\in B_1\cap B_2$, $\exists B_3\in \mathcal{B}$ such that $x\in B_3\subseteq B_1\cap B_2$
|
||||
|
||||
<details>
|
||||
<summary>Example 1</summary>
|
||||
<summary>Example of standard basis in real numbers</summary>
|
||||
|
||||
Let $X=\mathbb{R}$ and $\mathcal{B}=\{(a,b)|a,b\in \mathbb{R},a<b\}$ (collection of all open intervals).
|
||||
|
||||
@@ -27,7 +27,7 @@ let $B_1=(a,b)$ and $B_2=(c,d)$ be two basis elements, and $x\in B_1\cap B_2=(\m
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Example 2</summary>
|
||||
<summary>Example of lower limit basis in real numbers</summary>
|
||||
|
||||
Let $X=\mathbb{R}$ and $\mathcal{B}_{LL}=\{[a,b)|a,b\in \mathbb{R},a<b\}$ (collection of all open intervals).
|
||||
|
||||
@@ -48,7 +48,7 @@ Extend this to $\mathbb{R}^2$.
|
||||
Let $X$ and $Y$ be sets. The cartesian product of $X$ and $Y$ is the set $X\times Y=\{(x,y)|x\in X,y\in Y\}$.
|
||||
|
||||
<details>
|
||||
<summary>Example 3</summary>
|
||||
<summary>Example of open rectangles basis for real plane</summary>
|
||||
|
||||
Let $X=\mathbb{R}^2$ and $\mathcal{B}$ be the collection of rectangle of the form $(a,b)\times (c,d)$ where $a,b,c,d\in \mathbb{R}$ and $a<b,c<d$. (boundary is not included)
|
||||
|
||||
@@ -63,7 +63,7 @@ let $B_1=(a,b)\times (c,d)$ and $B_2=(e,f)\times (g,h)$ be two basis elements, a
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Example 4</summary>
|
||||
<summary>Example of open disks basis for real plane</summary>
|
||||
|
||||
Let $X=\mathbb{R}^2$ and $\mathcal{B}$ be the collection of open disks.
|
||||
|
||||
|
||||
@@ -109,7 +109,7 @@ So $B_1\cap B_2\in \mathcal{B}$.
|
||||
|
||||
</details>
|
||||
|
||||
We call $\mathcal{B}$ the topology generated by the subbasis $\mathcal{S}$. Denote it by $\mathcal{T}_{\mathcal{S}}$.
|
||||
We call the topology generated by $\mathcal{B}$ the topology generated by the subbasis $\mathcal{S}$. Denote it by $\mathcal{T}_{\mathcal{S}}$.
|
||||
|
||||
An open set with respect to $\mathcal{T}_{\mathcal{S}}$ is a subset of $X$ such that it can be written as a union of finitely intersections of elements of $\mathcal{S}$.
|
||||
|
||||
|
||||
@@ -51,7 +51,7 @@ So the discrete topology is finer than the trivial topology.
|
||||
Let $\mathcal{T}$ and $\mathcal{T}'$ be topologies on $X$ associated with bases $\mathcal{B}$ and $\mathcal{B}'$. Then
|
||||
|
||||
$$
|
||||
\mathcal{T}\text{ is finer than } \mathcal{T}'\iff \text{ for any } B'\in \mathcal{B}', \exists B\in \mathcal{B} \text{ such that } B'\subseteq B
|
||||
\mathcal{T}\text{ is finer than } \mathcal{T}'\iff \text{ for any } x\in X, x\in B'\in \mathcal{B}', \exists B\in \mathcal{B} \text{ such that } x\in B\subseteq B'
|
||||
$$
|
||||
|
||||
<details>
|
||||
|
||||
Reference in New Issue
Block a user