update
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
# Math4501 Lecture 1
|
||||
|
||||
In many practical problems (ODEs, PdEs, Sys of eqn)
|
||||
In many practical problems (ODEs (ordinary differential equations), PdEs (partial differential equations), System of equations)
|
||||
|
||||
closed-form analytical solutions are unknown.
|
||||
|
||||
|
||||
76
content/Math4501/Math4501_L2.md
Normal file
76
content/Math4501/Math4501_L2.md
Normal file
@@ -0,0 +1,76 @@
|
||||
# Math4501 Lecture 2
|
||||
|
||||
Solving non-linear equations
|
||||
|
||||
Let $\vec{f}:\mathbb{R}^n\to\mathbb{R}^n$ we want to solve $\vec{f}(\vec{x})=\vec{0}$. ($m$ equations, $m$ variables)
|
||||
|
||||
In case if $\vec{f}$ is linear, we can solve it by Gaussian elimination.
|
||||
|
||||
Closely related to the problem: eigenvalue problem.
|
||||
|
||||
related to root finding problem for polynomial.
|
||||
|
||||
## Polynomial approximations
|
||||
|
||||
Let $f:[0,1]\to\mathbb{R}$ be a continuous function.
|
||||
|
||||
Find polynomial $p_n$ of degree $n$ such that $p_n(x_i)=f(x_i)$ for $i=0,1,\cdots,n$.
|
||||
|
||||
Then, some key questions are involved:
|
||||
|
||||
1. How to compute $c_0,c_1,\cdots,c_n$?
|
||||
2. If $f$ is continuously differentiable, does $p_n'$ approximate $f'$?
|
||||
3. If $f$ is integrable, does $\int_0^1 p_n(x)dx$ approximate $\int_0^1 f(x)dx$?
|
||||
|
||||
Deeper questions:
|
||||
|
||||
Is the approximation **efficient**?
|
||||
|
||||
## Scalar problem
|
||||
|
||||
Problem 1: Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Find $\xi\in[a,b]$ such that $f(\xi)=0$.
|
||||
|
||||
Problem 2: Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Find $\xi\in[a,b]$ such that $f(\xi)=\xi$.
|
||||
|
||||
P1, P2 are equivalent. $f(x)\coloneqq f(x)-x$ is a continuous function.
|
||||
|
||||
[Intermediate value theorem](https://notenextra.trance-0.com/Math4121/Math4121_L3#definition-5121-intermediate-value)
|
||||
|
||||
> Some advantage in solving P1 as P2
|
||||
|
||||
### When does a solution exists
|
||||
|
||||
Trivial case: $f(x)=0$ for some $x\in[a,b]$.
|
||||
|
||||
Without loss of generality, assume $f(a)f(b)<0$, Then there exists $\xi\in(a,b)$ such that $f(\xi)=0$.
|
||||
|
||||
Bisection algorithm:
|
||||
|
||||
```python
|
||||
def bisection(f, a, b, tol=1e-6, max_iter=100):
|
||||
# first we setup two sequences $a_n$ and $b_n$
|
||||
# require:
|
||||
# |a_n - b_n| \leq 2^{-n} (b-a)
|
||||
for i in range(max_iter):
|
||||
c = (a + b) / 2
|
||||
if c < tol or f(c) == 0:
|
||||
return c
|
||||
elif f(a) * f(c) < 0:
|
||||
b = c
|
||||
else:
|
||||
a = c
|
||||
return None
|
||||
```
|
||||
|
||||
Let $f(a_n)<0$ for all $n$ and $f(b_n)>0$ for all $n$.
|
||||
|
||||
$\lim_{n\to\infty} f(a_n)\leq 0$ and $\lim_{n\to\infty} f(b_n)\geq 0$.
|
||||
|
||||
If limit exists, then $\lim_{n\to\infty} f(a_n)=\lim_{n\to\infty} f(b_n)=0$.
|
||||
|
||||
Such limit exists by the sequence $a_n$ and $b_n$ is Cauchy and we are in real number field.
|
||||
|
||||
This can be used to solve P2:
|
||||
|
||||
Recall that if we define $f(x)\coloneqq g(x)-x$, then $f(x)=0$ if and only if $f(a)f(b)<0$. That is $(g(a)-a)(g(b)-b)\leq 0$.
|
||||
|
||||
8
content/Math4501/_meta.js
Normal file
8
content/Math4501/_meta.js
Normal file
@@ -0,0 +1,8 @@
|
||||
export default {
|
||||
index: "Course Description",
|
||||
"---":{
|
||||
type: 'separator'
|
||||
},
|
||||
Math4501_L1: "Numerical Applied Mathematics (Lecture 1)",
|
||||
Math4501_L2: "Numerical Applied Mathematics (Lecture 2)",
|
||||
}
|
||||
3
content/Math4501/index.md
Normal file
3
content/Math4501/index.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# Math4501
|
||||
|
||||
Numerical Applied Mathematics
|
||||
Reference in New Issue
Block a user