updates
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
131
content/Math4302/Math4302_L10.md
Normal file
131
content/Math4302/Math4302_L10.md
Normal file
@@ -0,0 +1,131 @@
|
||||
# Math4302 Modern Algebra (Lecture 9)
|
||||
|
||||
## Groups
|
||||
|
||||
### Group homomorphism
|
||||
|
||||
Recall the kernel of a group homomorphism is the set
|
||||
|
||||
$$
|
||||
\operatorname{ker}(\phi)=\{a\in G|\phi(a)=e'\}
|
||||
$$
|
||||
|
||||
<details>
|
||||
<summary>Example</summary>
|
||||
|
||||
Let $\phi:(\mathbb{Z},+)\to (\mathbb{Z}_n,+)$ where $\phi(k)=k\mod n$.
|
||||
|
||||
The kernel of $\phi$ is the set of all multiples of $n$.
|
||||
|
||||
</details>
|
||||
|
||||
#### Theorem for one-to-one group homomorphism
|
||||
|
||||
$\phi:G\to G'$ is one-to-one if and only if $\operatorname{ker}(\phi)=\{e\}$
|
||||
|
||||
If $\phi$ is one-to-one, then $\phi(G)\leq G'$, $G$ is isomorphic ot $\phi(G)$ (onto automatically).
|
||||
|
||||
If $A$ is a set, then a permutation of $A$ is a bijection $f:A\to A$.
|
||||
|
||||
#### Cayley's Theorem
|
||||
|
||||
Every group $G$ is isomorphic to a subgroup of $S_A$ for some $A$ (and if $G$ is finite then $A$ can be taken to be finite.)
|
||||
|
||||
<details>
|
||||
<summary>Example</summary>
|
||||
|
||||
$D_n\leq S_n$, so $A=\{1,2,\cdots,n\}$
|
||||
|
||||
---
|
||||
|
||||
$\mathbb{Z}_n\leq S_n$, (use the set of rotations) so $A=\{1,2,\cdots,n\}$ $\phi(i)=\rho^i$ where $i\in \mathbb{Z}_n$ and $\rho\in D_n$
|
||||
|
||||
---
|
||||
|
||||
$GL(2,\mathbb{R})$. Set $A=\mathbb{R}^2$, for every $A\in GL(2,\mathbb{R})$, let $\phi(A)$ be the permutation of $\mathbb{R}^2$ induced by $A$, so $\phi(A)=f_A:\mathbb{R}^2\to \mathbb{R}^2$, $f_A(\begin{pmatrix}x\\y\end{pmatrix})=A\begin{pmatrix}x\\y\end{pmatrix}$
|
||||
|
||||
We want to show that this is a group homomorphism.
|
||||
|
||||
- $\phi(AB)=\phi(A)\phi(B)$ (it is a homomorphism)
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
f_{AB}(\begin{pmatrix}x\\y\end{pmatrix})&=AB\begin{pmatrix}x\\y\end{pmatrix}\\
|
||||
&=f_A(B\begin{pmatrix}x\\y\end{pmatrix})\\
|
||||
&=f_A(f_B(\begin{pmatrix}x\\y\end{pmatrix}))\\
|
||||
&=(f_A\circ f_B)(\begin{pmatrix}x\\y\end{pmatrix})\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
- Then we need to show that $\phi$ is one-to-one.
|
||||
|
||||
It is sufficient to show that $\operatorname{ker}(\phi)=\{e\}$.
|
||||
|
||||
Solve $f_A(\begin{pmatrix}x\\y\end{pmatrix})=\begin{pmatrix}x\\y\end{pmatrix}$, the only choice for $A$ is the identity matrix.
|
||||
|
||||
Therefore $\operatorname{ker}(\phi)=\{e\}$.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>Proof for Cayley's Theorem</summary>
|
||||
|
||||
Let $A=G$, for every $g\in G$, define $\lambda_g:G\to G$ by $\lambda_g(x)=gx$.
|
||||
|
||||
Then $\lambda_g$ is a **permutation** of $G$. (not homomorphism)
|
||||
|
||||
- $\lambda_g$ is one-to-one by cancellation on the left.
|
||||
- $\lambda_g$ is onto since $\lambda_g(g^{-1}y)=y$ for every $y\in G$.
|
||||
|
||||
We claim $\phi: G\to S_G$ define by $\phi(g)=\lambda_g$ is a group homomorphism that is one-to-one.
|
||||
|
||||
First we show that $\phi$ is homomorphism.
|
||||
|
||||
$\forall x\in G$
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\phi(g_1)\phi(g_2)&=\lambda_{g_1}(\lambda_{g_2}(x))\\
|
||||
&=\lambda_{g_1g_2}(x)\\
|
||||
&=\phi(g_1g_2)x\\
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
This is one to one since if $\phi(g_1)=\phi(g_2)$, then $\lambda_{g_1}=\lambda_{g_2}\forall x$, therefore $g_1=g_2$.
|
||||
|
||||
</details>
|
||||
|
||||
### Odd and even permutations
|
||||
|
||||
#### Definition of transposition
|
||||
|
||||
A $\sigma\in S_n$ is a transposition is a two cycle $\sigma=(i j)$
|
||||
|
||||
Fact: Every permutation in $S_n$ can be written as a product of transpositions. (may not be disjoint transpositions)
|
||||
|
||||
<details>
|
||||
<summary>Example of a product of transpositions</summary>
|
||||
|
||||
Consider $(1234)=(14)(13)(12)$.
|
||||
|
||||
In general, $(i_1,i_2,\cdots,i_m)=(i_1i_m)(i_2i_{m-1})(i_3i_{m-2})\cdots(i_1i_2)$
|
||||
|
||||
This is not the unique way.
|
||||
|
||||
$$
|
||||
(12)(34)=(42)(34)(23)(12)
|
||||
$$
|
||||
|
||||
</details>
|
||||
|
||||
But the parity of the number of transpositions is unique.
|
||||
|
||||
#### Theorem for parity of transpositions
|
||||
|
||||
If $\sigma\in S_n$ is written as a product of transposition, then the number of transpositions is either always odd or even.
|
||||
|
||||
#### Definition of odd and even permutations
|
||||
|
||||
$\sigma$ is an even permutation if the number of transpositions is even.
|
||||
|
||||
$\sigma$ is an odd permutation if the number of transpositions is odd.
|
||||
Reference in New Issue
Block a user