fix errors and update news
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
5
content/CSE4303/CSE4303_L6.md
Normal file
5
content/CSE4303/CSE4303_L6.md
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
# CSE4303 Introduction to Computer Security (Lecture 6)
|
||||||
|
|
||||||
|
Refer to this lecture notes
|
||||||
|
|
||||||
|
[CSE442T Lecture 3](https://notenextra.trance-0.com/CSE442T/CSE442T_L3/)
|
||||||
65
content/CSE4303/CSE4303_L7.md
Normal file
65
content/CSE4303/CSE4303_L7.md
Normal file
@@ -0,0 +1,65 @@
|
|||||||
|
# CSE4303 Introduction to Computer Security (Lecture 7)
|
||||||
|
|
||||||
|
## Cyptography in Symmetric Systems
|
||||||
|
|
||||||
|
### Symmetric systems
|
||||||
|
|
||||||
|
Symmetric (shared-key) encryption
|
||||||
|
|
||||||
|
- Classical techniques
|
||||||
|
- Computer-aided techniques
|
||||||
|
- Formal reasoning
|
||||||
|
- Realizations:
|
||||||
|
- Stream ciphers
|
||||||
|
- Block ciphers
|
||||||
|
|
||||||
|
#### Stream ciphers
|
||||||
|
|
||||||
|
1. Operate on PT one bit at a time (usually), as a bit "stream"
|
||||||
|
2. Generate arbitrarily long keystream on demand
|
||||||
|
|
||||||
|
Security abstraction:
|
||||||
|
|
||||||
|
1. XOR transfers randomness of keystream to randomness of CT regardless of PT’s content
|
||||||
|
2. Security depends on G being “practically” indistinguishable from random string and “practically” unpredictable
|
||||||
|
3. Idea: shouldn’t be able to predict next bit of generator given all bits seen so far
|
||||||
|
|
||||||
|
Keystream $G(k)$
|
||||||
|
|
||||||
|
- Idea: shouldn’t be able to predict next bit of generator given all bits seen so far
|
||||||
|
- Strategies and challenges: many!
|
||||||
|
- Idea that doesn’t quite work: Linear Feedback Shift Register (LFSR)
|
||||||
|
- Choice of feedback: by algebra
|
||||||
|
- Pro: fast, statistically close to random
|
||||||
|
- Problem: susceptible to cryptanalysis (b/c linear)
|
||||||
|
- LFSR-based
|
||||||
|
- Modifications to basic LFSR:
|
||||||
|
- Use non-linear combo of multiple LFSRs
|
||||||
|
- Use controlled clocking (e.g. only cycle the LFSR when another LFSR outputs a 1)
|
||||||
|
- Etc.
|
||||||
|
- Others: mod arithmetic-based, other algebraic constructions
|
||||||
|
|
||||||
|
#### Block ciphers
|
||||||
|
|
||||||
|
1. Operate on PT one block at a time
|
||||||
|
2. Use same key for multiple blocks (with caveats)
|
||||||
|
3. Chaining modes intertwine successive blocks of CT (or not)
|
||||||
|
|
||||||
|
View cipher as a Pseudo-Random Permutation (PRP)
|
||||||
|
|
||||||
|
- PRP defined over $(K, X)$:
|
||||||
|
|
||||||
|
$$
|
||||||
|
E: K \times X \to X
|
||||||
|
$$
|
||||||
|
|
||||||
|
such that:
|
||||||
|
|
||||||
|
1. There exists an “efficient” deterministic algorithm to evaluate $E(k,x)$.
|
||||||
|
2. The function $E( k, \cdot )$ is one-to-one.
|
||||||
|
3. There exists an “efficient” inversion algorithm $D(k,y)$.
|
||||||
|
|
||||||
|
- i.e. a PRF that is an invertible 1-to-1 mapping from message space to
|
||||||
|
message space
|
||||||
|
|
||||||
|
|
||||||
@@ -8,4 +8,6 @@ export default {
|
|||||||
CSE4303_L3: "Introduction to Computer Security (Lecture 3)",
|
CSE4303_L3: "Introduction to Computer Security (Lecture 3)",
|
||||||
CSE4303_L4: "Introduction to Computer Security (Lecture 4)",
|
CSE4303_L4: "Introduction to Computer Security (Lecture 4)",
|
||||||
CSE4303_L5: "Introduction to Computer Security (Lecture 5)",
|
CSE4303_L5: "Introduction to Computer Security (Lecture 5)",
|
||||||
|
CSE4303_L6: "Introduction to Computer Security (Lecture 6)",
|
||||||
|
CSE4303_L7: "Introduction to Computer Security (Lecture 7)",
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -21,7 +21,7 @@ If $\mathbb{R}_l$ is second countable, then for any real number $x$, there is an
|
|||||||
|
|
||||||
Any such open sets is of the form $[x,x+\epsilon)\cap A$ with $\epsilon>0$ and any element of $A$ being larger than $\min(U_x)=x$.
|
Any such open sets is of the form $[x,x+\epsilon)\cap A$ with $\epsilon>0$ and any element of $A$ being larger than $\min(U_x)=x$.
|
||||||
|
|
||||||
In summary, for any $x\in \mathbb{R}$, there is an element $U_x\in \mathcal{B}$ with $(U_x)=x$. In particular, if $x\neq y$, then $U_x\neq U_y$. SO there is an injective map $f:\mathbb{R}\rightarrow \mathcal{B}$ sending $x$ to $U_x$. This implies that $\mathbb{B}$ is uncountable.
|
In summary, for any $x\in \mathbb{R}$, there is an element $U_x\in \mathcal{B}$ with $(U_x)=x$. In particular, if $x\neq y$, then $U_x\neq U_y$. So there is an injective map $f:\mathbb{R}\rightarrow \mathcal{B}$ sending $x$ to $U_x$. This implies that $\mathcal{B}$ is uncountable.
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
|||||||
@@ -27,7 +27,7 @@ $$
|
|||||||
Let $(X,\mathcal{T})$ be a topological space. Let $\mathcal{C}\subseteq \mathcal{T}$ be a collection of subsets of $X$ satisfying the following property:
|
Let $(X,\mathcal{T})$ be a topological space. Let $\mathcal{C}\subseteq \mathcal{T}$ be a collection of subsets of $X$ satisfying the following property:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\forall U\in \mathcal{T}, \exists C\in \mathcal{C} \text{ such that } U\subseteq C
|
\forall U\in \mathcal{T}, \exists C\in \mathcal{C} \text{ such that } C\subseteq U
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Then $\mathcal{C}$ is a basis and the topology generated by $\mathcal{C}$ is $\mathcal{T}$.
|
Then $\mathcal{C}$ is a basis and the topology generated by $\mathcal{C}$ is $\mathcal{T}$.
|
||||||
|
|||||||
Reference in New Issue
Block a user