fix katex

This commit is contained in:
Zheyuan Wu
2025-07-10 15:30:16 -05:00
parent da283e28cc
commit 92e6de21d5
5 changed files with 34 additions and 4 deletions

View File

@@ -4,8 +4,29 @@ The page's lemma is a fundamental result in quantum information theory that prov
## Statement
Let $\mathcal{H}$ be a Hilbert space and $\mathcal{L}(\mathcal{H})$ be the set of linear operators on $\mathcal{H}$.
Choosing a random pure quantum state $\rho$ from the bi-partite pure state space $\mathcal{H}_A\otimes\mathcal{H}_B$ with the uniform distribution, the expected entropy of the reduced state $\rho_A$ is:
Let $\mathcal{E}: \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ be a quantum channel.
$$
\mathbb{E}[H(\rho_A)]\geq \ln d_A -\frac{1}{2\ln 2} \frac{d_A}{d_B}
$$
Then, for any $\rho \in \mathcal{L}(\mathcal{H})$, we have:
## Page's conjecture
A quantum system $AB$ with the Hilbert space dimension $mn$ in a pure state $\rho_{AB}$ has entropy $0$ but the entropy of the reduced state $\rho_A$, assume $m\leq n$, then entropy of the two subsystem $A$ and $B$ is greater than $0$.
unless $A$ and $B$ are separable.
In the original paper, the entropy of the average state taken under the unitary invariant Haar measure is:
$$
S_{m,n}=\sum_{k=n+1}^{mn}\frac{1}{k}-\frac{m-1}{2n}
$$
## References
- [Page's conjecture](https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.71.1291)
- [Page's conjecture simple proof](https://journals.aps.org/pre/pdf/10.1103/PhysRevE.52.5653)