updates
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
@@ -29,7 +29,7 @@ Generally, we can define a binary operation over sets whatever we want.
|
||||
|
||||
---
|
||||
|
||||
Let $X=\{a,b,c\}$ and we can define the table for binary operation as follows:
|
||||
Let $X=\{a,b,c\}$ and we can define the (Cayley) table for binary operation as follows:
|
||||
|
||||
|*| a | b | c |
|
||||
|---|---|---|---|
|
||||
|
||||
@@ -146,6 +146,8 @@ right cancellation are the same
|
||||
> [!NOTE]
|
||||
>
|
||||
> This also implies that every row/column of the table representation of the binary operation is distinct.
|
||||
>
|
||||
> _If not, suppose $a,b$ have the same row/column, then we can prove $a=b$ using cancellation from right and left._
|
||||
|
||||
3. We can solve equations $a*x=b \text{ and } x*a=b
|
||||
$ uniquely.
|
||||
@@ -156,7 +158,7 @@ $x=a^{-1}* b$, similarly $x=b* a^{-1}$.
|
||||
|
||||
Group with 1 element $\{e\}$.
|
||||
|
||||
Group with 2 elements $\{e,a\}$.
|
||||
Group with 2 elements $\{e,a\}$. (example is $(\{-1,1\},\times)$)
|
||||
|
||||
And
|
||||
|
||||
|
||||
99
content/Math4302/Math4302_L3.md
Normal file
99
content/Math4302/Math4302_L3.md
Normal file
@@ -0,0 +1,99 @@
|
||||
# Math4302 Modern Algebra (Lecture 3)
|
||||
|
||||
## Groups
|
||||
|
||||
<details>
|
||||
<summary>More examples for groups</summary>
|
||||
|
||||
Let $\mathbb{Q}^+$ be the set of positive rational numbers.
|
||||
|
||||
Then $(\mathbb{Q}^+,\times)$ is a abelian group with identity $1$ and inverse $a^{-1}=\frac{1}{a}$.
|
||||
|
||||
If we defined $*$ by $a*b=\frac{ab}{2}$, then we have identity $2$. $a*e=\frac{ae}{2}=a$, we have $e=2$.
|
||||
|
||||
and inverse $a^{-1}a=\frac{a^2}{2}=2$, therefore $a^{-1}=\frac{4}{a}$.
|
||||
|
||||
This is also an abelian group.
|
||||
|
||||
</details>
|
||||
|
||||
### Properties for groups
|
||||
|
||||
- $(a*b)^{-1}=b^{-1}*a^{-1}$ (inverse)
|
||||
- $a*b=a*c\implies b=c$ (cancellation on the left)
|
||||
- $b*a=c*a\implies b=c$ (cancellation on the right)
|
||||
- If $a*b=e$, then $b=a^{-1}$ (we can solve linear equations)
|
||||
|
||||
#### Additional notation
|
||||
|
||||
for $n\geq 1$,
|
||||
|
||||
- $a^n=a*a\cdot \cdots \cdot a$ (n times)
|
||||
- $a^{-n}=a^{-1}\cdot \cdots \cdot a^{-1}$ (n times)
|
||||
|
||||
for $n=0$, $a^0=e$
|
||||
|
||||
We can easily prove this is equivalent to our usual sense for power notations.
|
||||
|
||||
That is
|
||||
|
||||
- $a^n*a^m=a^{n+m}$
|
||||
- $(a^n)^m=a^{nm}$
|
||||
- $a^{-n}=(a^{-1})^n$
|
||||
|
||||
### Finite groups
|
||||
|
||||
Group with 4 elements.
|
||||
|
||||
|*|e|a|b|c|
|
||||
|---|---|---|---|---|
|
||||
|e|e|a|b|c|
|
||||
|a|a|b|c|e|
|
||||
|b|b|c|e|a|
|
||||
|c|c|e|a|b|
|
||||
|
||||
Note $a,c$ are inverses and $b$ self inverse.
|
||||
|
||||
_isomorphic to $(\mathbb{Z}_4,+)$, $(\{1,-1,i,-i\},\cdot)$_
|
||||
|
||||
and we may also have
|
||||
|
||||
|*|e|a|b|c|
|
||||
|---|---|---|---|---|
|
||||
|e|e|a|b|c|
|
||||
|a|a|e|c|b|
|
||||
|b|b|c|e|a|
|
||||
|c|c|b|a|e|
|
||||
|
||||
is
|
||||
|
||||
#### Cyclic groups
|
||||
|
||||
It is the group of integers modulo addition $n$.
|
||||
|
||||
- Associativity: $(a+b)+c=a+(b+c)$
|
||||
- Identity: $a+0=a$
|
||||
- Inverses: $a+(-a)=0$
|
||||
|
||||
For group with $4$ elements
|
||||
|
||||
|*|0|1|2|3|
|
||||
|---|---|---|---|---|
|
||||
|0|0|1|2|3|
|
||||
|1|1|2|3|0|
|
||||
|2|2|3|0|1|
|
||||
|3|3|0|1|2|
|
||||
|
||||
#### Complex numbers
|
||||
|
||||
Consider $\{1,i,-1,-i\}$ with multiplication.
|
||||
|
||||
|*|1|i|-1|-i|
|
||||
|---|---|---|---|---|
|
||||
|1|1|i|-1|-i|
|
||||
|i|i|-1|-i|1|
|
||||
|-1|-1|-i|1|i|
|
||||
|-i|-i|1|i|-1|
|
||||
|
||||
Note that if we replace $1$ with $0$ and $i$ with $1$, and $-1$ with $2$ and $-i$ with $3$, you get the exact the same table as $\mathbb{Z}_4$.
|
||||
|
||||
@@ -5,4 +5,5 @@ export default {
|
||||
},
|
||||
Math4302_L1: "Modern Algebra (Lecture 1)",
|
||||
Math4302_L2: "Modern Algebra (Lecture 2)",
|
||||
Math4302_L3: "Modern Algebra (Lecture 3)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user