updates
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
@@ -1,4 +1,4 @@
|
|||||||
# Math4202 Topology II (Lecture 5)
|
# Math4202 Topology II (Lecture 6)
|
||||||
|
|
||||||
## Manifolds
|
## Manifolds
|
||||||
|
|
||||||
|
|||||||
63
content/Math4202/Math4202_L7.md
Normal file
63
content/Math4202/Math4202_L7.md
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
# Math4202 Topology II (Lecture 6)
|
||||||
|
|
||||||
|
## Algebraic Topology
|
||||||
|
|
||||||
|
Classify 2-dimensional topological manifolds (connected) up to homeomorphism/homotopy equivalence.
|
||||||
|
|
||||||
|
Use fundamental groups.
|
||||||
|
|
||||||
|
We want to show that:
|
||||||
|
|
||||||
|
1. The fundamental group is invariant under the equivalence relation.
|
||||||
|
2. develop some methods to compute the groups.
|
||||||
|
3. 2-dimensional topological spaces with the same fundamental group are equivalent (homeomorphism).
|
||||||
|
|
||||||
|
### Homotopy of paths
|
||||||
|
|
||||||
|
#### Definition of path
|
||||||
|
|
||||||
|
If $f$ and $f'$ are two continuous maps from $X$ to $Y$, where $X$ and $Y$ are topological spaces. Then we say that $f$ is homotopic to $f'$ if there exists a continuous map $F:X\times [0,1]\to Y$ such that $F(x,0)=f(x)$ and $F(x,1)=f'(x)$ for all $x\in X$.
|
||||||
|
|
||||||
|
The map $F$ is called a homotopy between $f$ and $f'$.
|
||||||
|
|
||||||
|
We use $f\simeq f'$ to mean that $f$ is homotopic to $f'$.
|
||||||
|
|
||||||
|
#### Definition of homotopic equivalence map
|
||||||
|
|
||||||
|
Let $f:X\to Y$ and $g:Y\to X$ be two continuous maps. If $f\circ g:Y\to Y$ and $g\circ f:X\to X$ are homotopic to the identity maps $\operatorname{id}_Y$ and $\operatorname{id}_X$, then $f$ and $g$ are homotopic equivalence maps. And the two spaces $X$ and $Y$ are homotopy equivalent.
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
>
|
||||||
|
> This condition is weaker than homeomorphism. (In homeomorphism, let $g=f^{-1}$, we require $g\circ f=\operatorname{id}_X$ and $f\circ g=\operatorname{id}_Y$.)
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Example of homotopy equivalence maps</summary>
|
||||||
|
|
||||||
|
Let $X=\{a\}$ and $Y=[0,1]$ with standard topology.
|
||||||
|
|
||||||
|
Consider $f:X\to Y$ by $f(a)=0$ and $g:Y\to X$ by $g(y)=a$, where $y\in [0,1]$.
|
||||||
|
|
||||||
|
$g\circ f=\operatorname{id}_X$ and $f\circ g=[0,1]\mapsto 0$.
|
||||||
|
|
||||||
|
$g\circ f\simeq \operatorname{id}_X$
|
||||||
|
|
||||||
|
and $f\circ g\simeq \operatorname{id}_Y$.
|
||||||
|
|
||||||
|
Consider $F:X\times [0,1]\to Y$ by $F(a,0)=0$ and $F(a,t)=(1-t)y$. $F$ is continuous and homotopy between $f\circ g$ and $\operatorname{id}_Y$.
|
||||||
|
|
||||||
|
This gives example of homotopy but not homeomorphism.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### Definition of null homology
|
||||||
|
|
||||||
|
If $f:X\to Y$ is homotopy to a constant map. $f$ is called null homotopy.
|
||||||
|
|
||||||
|
#### Definition of path homotopy
|
||||||
|
|
||||||
|
Let $f,f':I\to X$ be a continuous maps from an interval $I=[0,1]$ to a topological space $X$.
|
||||||
|
|
||||||
|
Two pathes $f$ and $f'$ are path homotopic if
|
||||||
|
|
||||||
|
- there exists a continuous map $F:I\times [0,1]\to X$ such that $F(i,0)=f(i)$ and $F(i,1)=f'(i)$ for all $i\in I$.
|
||||||
|
- $f(0)=f'(0)$ and $f(1)=f'(1)$.
|
||||||
@@ -9,4 +9,5 @@ export default {
|
|||||||
Math4202_L4: "Topology II (Lecture 4)",
|
Math4202_L4: "Topology II (Lecture 4)",
|
||||||
Math4202_L5: "Topology II (Lecture 5)",
|
Math4202_L5: "Topology II (Lecture 5)",
|
||||||
Math4202_L6: "Topology II (Lecture 6)",
|
Math4202_L6: "Topology II (Lecture 6)",
|
||||||
|
Math4202_L7: "Topology II (Lecture 7)",
|
||||||
}
|
}
|
||||||
|
|||||||
83
content/Math4302/Math4302_L7.md
Normal file
83
content/Math4302/Math4302_L7.md
Normal file
@@ -0,0 +1,83 @@
|
|||||||
|
# Math4302 Modern Algebra (Lecture 7)
|
||||||
|
|
||||||
|
## Subgroups
|
||||||
|
|
||||||
|
### Cyclic group
|
||||||
|
|
||||||
|
Last time, let $G$ be a group and $a\in G$. $|\langle a\rangle|=$ smallest positive $n$ such that $a^n=e$.
|
||||||
|
|
||||||
|
$\langle a\rangle=\{a^0,a^1,a^2,\cdots,a^{n-1}\}$.
|
||||||
|
|
||||||
|
|
||||||
|
#### Lemma subgroup of cyclic group is cyclic
|
||||||
|
|
||||||
|
Every subgroup of a cyclic group is cyclic.
|
||||||
|
|
||||||
|
$G=\langle a\rangle$.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof</summary>
|
||||||
|
|
||||||
|
Let $H\leq G$ be a subgroup.
|
||||||
|
|
||||||
|
If $H=\{e\}$, we are done.
|
||||||
|
|
||||||
|
Otherwise, let $m$ be the smallest positive integer such that $a^m\in H$. We claim $H=\langle a^m\rangle$.
|
||||||
|
|
||||||
|
- $\langle a^m\rangle\subseteq H$. trivial since $a^m\in H$ and $H$ is a subgroup.
|
||||||
|
- $H\subseteq\langle a^m\rangle$. Suppose $a^k\in H$, need to show $a^k\in \langle a^m\rangle$
|
||||||
|
Divide $k$ by $m$: $k=qm+r$, $0\leq r\leq m-1$, Then $a^k\in H\implies a^{qm+r}\in H$. Also $a^m\in H$, then $(a^m)^q\in H$, so $a^mq\in H$, $a^-mq\in H$, so $a^{k}a^{-mq}\in H$, so $a^r\in H$, so $r$ has to be zero.
|
||||||
|
By our choice of $m$, $k=mq$, so $a^k=a^mq\in \langle a^m\rangle$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Example</summary>
|
||||||
|
|
||||||
|
Every subgroup of $(\mathbb{Z},+)$ is of the form
|
||||||
|
|
||||||
|
like the multiples of $n$: $n\mathbb{Z}=\langle n\rangle$ for some $n\geq 0$.
|
||||||
|
|
||||||
|
In particular, if $n,m\geq 1$ are in $\mathbb{Z}$, then the subgroup $\{nr+ms|r,s\in \mathbb{Z}\}\leq \mathbb{Z}$.
|
||||||
|
|
||||||
|
is equal to $d\mathbb{Z}$ where $d=\operatorname{gcd}(n,m)$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
Skip $\operatorname{gcd}$ part, check for Math 4111 notes in this site.
|
||||||
|
|
||||||
|
|
||||||
|
#### Lemma for size of cyclic subgroup
|
||||||
|
|
||||||
|
Let $G=\langle a\rangle$, $|G|=n$, and $H=\langle a^m\rangle\subseteq G$. Then $|H|=\frac{n}{d}$ where $d=\operatorname{gcd}(|G|,|H|)$.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof</summary>
|
||||||
|
|
||||||
|
Recall $|H|$ is the smallest power of $a^m$ which is equal to $e$.
|
||||||
|
|
||||||
|
Let $d=\operatorname{gcd}(m,n)$, so $m=m_1d$, $n=n_1d$. and $\frac{n}{\operatorname{gcd}(m,n)}=n_1$,
|
||||||
|
|
||||||
|
- $(a^m)^{n_1}=a^{mn_1}=a^{m_1dn_1}=a^{m_1n}=(a^n)^{m_1}=e$.
|
||||||
|
- If $(a^m)^k=e$, the $a^{mk}=e\implies$ $mk$ is a multiple of $n$,
|
||||||
|
- If $a^\ell=e$, divide $\ell$ by $n$, $\ell=nq+r$, $0\leq r\leq n-1$, then $e=a^\ell=a^{nq+r}=a^r$, $r$ has to be zero, so $a^\ell=a^r=e$. $n|\ell$.
|
||||||
|
- $n_1d|m_1dk$, but by the definition of smallest common divisor, $m_1,n_1$ should not have common divisor other than $1$. So $n_1|m_1k$, $n_1|k\implies k\geq n_1$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Example Applying the lemma</summary>
|
||||||
|
|
||||||
|
Let $G=\langle a \rangle$, $|G|=6$, $H=\langle a^4\rangle$. Then $|H|=\frac{6}{d}=3$ where $d=\operatorname{gcd}(6,4)=2$.
|
||||||
|
|
||||||
|
To check this we do enumeration $\langle a^4\rangle=\{e,a^4,a^2\}$.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Find generator of $\mathbb{Z}_9$:
|
||||||
|
|
||||||
|
Using the coprime, we have $g=\{1,2,4,5,7,8\}$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
Corollary: $\langle a^m\rangle=G\iff |H|=n\iff \frac{n}{d}=n\iff \operatorname{gcd}(m,n)=1$ $m,n$ are coprime.
|
||||||
Reference in New Issue
Block a user