2.8 KiB
Math4302 Modern Algebra (Lecture 7)
Subgroups
Cyclic group
Last time, let G be a group and a\in G. |\langle a\rangle|= smallest positive n such that a^n=e.
\langle a\rangle=\{a^0,a^1,a^2,\cdots,a^{n-1}\}.
Lemma subgroup of cyclic group is cyclic
Every subgroup of a cyclic group is cyclic.
G=\langle a\rangle.
Proof
Let H\leq G be a subgroup.
If H=\{e\}, we are done.
Otherwise, let m be the smallest positive integer such that a^m\in H. We claim H=\langle a^m\rangle.
\langle a^m\rangle\subseteq H. trivial sincea^m\in HandHis a subgroup.H\subseteq\langle a^m\rangle. Supposea^k\in H, need to showa^k\in \langle a^m\rangleDividekbym:k=qm+r,0\leq r\leq m-1, Thena^k\in H\implies a^{qm+r}\in H. Alsoa^m\in H, then(a^m)^q\in H, soa^mq\in H,a^-mq\in H, soa^{k}a^{-mq}\in H, soa^r\in H, sorhas to be zero.
By our choice ofm,k=mq, soa^k=a^mq\in \langle a^m\rangle.
Example
Every subgroup of (\mathbb{Z},+) is of the form
like the multiples of n: n\mathbb{Z}=\langle n\rangle for some n\geq 0.
In particular, if n,m\geq 1 are in \mathbb{Z}, then the subgroup \{nr+ms|r,s\in \mathbb{Z}\}\leq \mathbb{Z}.
is equal to d\mathbb{Z} where d=\operatorname{gcd}(n,m).
Skip \operatorname{gcd} part, check for Math 4111 notes in this site.
Lemma for size of cyclic subgroup
Let G=\langle a\rangle, |G|=n, and H=\langle a^m\rangle\subseteq G. Then |H|=\frac{n}{d} where d=\operatorname{gcd}(|G|,|H|).
Proof
Recall |H| is the smallest power of a^m which is equal to e.
Let d=\operatorname{gcd}(m,n), so m=m_1d, n=n_1d. and \frac{n}{\operatorname{gcd}(m,n)}=n_1,
(a^m)^{n_1}=a^{mn_1}=a^{m_1dn_1}=a^{m_1n}=(a^n)^{m_1}=e.- If
(a^m)^k=e, thea^{mk}=e\impliesmkis a multiple ofn,- If
a^\ell=e, divide\ellbyn,\ell=nq+r,0\leq r\leq n-1, thene=a^\ell=a^{nq+r}=a^r,rhas to be zero, soa^\ell=a^r=e.n|\ell.
- If
n_1d|m_1dk, but by the definition of smallest common divisor,m_1,n_1should not have common divisor other than1. Son_1|m_1k,n_1|k\implies k\geq n_1.
Example Applying the lemma
Let G=\langle a \rangle, |G|=6, H=\langle a^4\rangle. Then |H|=\frac{6}{d}=3 where d=\operatorname{gcd}(6,4)=2.
To check this we do enumeration \langle a^4\rangle=\{e,a^4,a^2\}.
Find generator of \mathbb{Z}_9:
Using the coprime, we have g=\{1,2,4,5,7,8\}.
Corollary: \langle a^m\rangle=G\iff |H|=n\iff \frac{n}{d}=n\iff \operatorname{gcd}(m,n)=1 m,n are coprime.