update?
This commit is contained in:
@@ -101,3 +101,4 @@ $B$ decodes the result and obtains the 2 classical bits sent by $A$.
|
|||||||
|
|
||||||
### Multipartite entanglement
|
### Multipartite entanglement
|
||||||
|
|
||||||
|
> The role of the paper in Physics can be found in (15.86) on book Geometry of Quantum states.
|
||||||
@@ -145,4 +145,8 @@ QED
|
|||||||
|
|
||||||
## Drawing the connection between the space $S^{2n+1}$, $CP^n$, and $\mathbb{R}$
|
## Drawing the connection between the space $S^{2n+1}$, $CP^n$, and $\mathbb{R}$
|
||||||
|
|
||||||
##
|
A pure quantum state of size $N$ can be identified with a Hopf circle on the sphere $S^{2N-1}$.
|
||||||
|
|
||||||
|
A random pure state $|\psi\rangle$ of a bipartite $N\times K$ system such that $K\geq N\geq 3$.
|
||||||
|
|
||||||
|
The partial trace of such system produces a mixed state $\rho(\psi)=\operatorname{Tr}_K(|\psi\rangle\langle \psi|)$, with induced measure $\mu_K$. When $K=N$, the induced measure $\mu_K$ is the Hilbert-Schmidt measure.
|
||||||
|
|||||||
@@ -66,10 +66,6 @@ The Haar measure is the unique probability measure that is invariant under the a
|
|||||||
|
|
||||||
_The existence and uniqueness of the Haar measure is a theorem in compact lie group theory. For this research topic, we will not prove it._
|
_The existence and uniqueness of the Haar measure is a theorem in compact lie group theory. For this research topic, we will not prove it._
|
||||||
|
|
||||||
### Maxwell-Boltzmann distribution and projection of high-dimensional sphere
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Random sampling on the $CP^n$
|
### Random sampling on the $CP^n$
|
||||||
|
|
||||||
## Statement
|
## Statement
|
||||||
@@ -98,4 +94,6 @@ $$
|
|||||||
|
|
||||||
- [Page's conjecture](https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.71.1291)
|
- [Page's conjecture](https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.71.1291)
|
||||||
|
|
||||||
- [Page's conjecture simple proof](https://journals.aps.org/pre/pdf/10.1103/PhysRevE.52.5653)
|
- [Page's conjecture simple proof](https://journals.aps.org/pre/pdf/10.1103/PhysRevE.52.5653)
|
||||||
|
|
||||||
|
- [Geometry of quantum states an introduction to quantum entanglement second edition](https://www.cambridge.org/core/books/geometry-of-quantum-states/46B62FE3F9DA6E0B4EDDAE653F61ED8C)
|
||||||
@@ -257,7 +257,7 @@ $$
|
|||||||
\text{Range}(A)=\{w\in \mathscr{W}: \exists v\in \mathscr{V}, Av=w\}
|
\text{Range}(A)=\{w\in \mathscr{W}: \exists v\in \mathscr{V}, Av=w\}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
### Dual spaces and adjoints of linear maps\
|
### Dual spaces and adjoints of linear maps
|
||||||
|
|
||||||
#### Definition of linear map
|
#### Definition of linear map
|
||||||
|
|
||||||
@@ -321,7 +321,7 @@ $$
|
|||||||
\langle v|w\rangle
|
\langle v|w\rangle
|
||||||
$$
|
$$
|
||||||
|
|
||||||
is the inner product of $v$ and $w$.
|
is the inner product of $v$ and $w$. That is, $\langle v|w\rangle: \mathscr{H}\to \mathbb{C}$ is a linear functional satisfying the property of inner product.
|
||||||
|
|
||||||
$$
|
$$
|
||||||
|v\rangle
|
|v\rangle
|
||||||
@@ -606,10 +606,18 @@ for all $u_i\in \mathscr{H}_1$ and $v_i\in \mathscr{H}_2$.
|
|||||||
|
|
||||||
Such tensor product of linear operators is well defined.
|
Such tensor product of linear operators is well defined.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof</summary>
|
||||||
|
|
||||||
If $\sum_{i=1}^n a_i u_i\otimes v_i=\sum_{j=1}^m b_j u_j\otimes v_j$, then $a_i=b_j$ for all $i=1,2,\cdots,n$ and $j=1,2,\cdots,m$.
|
If $\sum_{i=1}^n a_i u_i\otimes v_i=\sum_{j=1}^m b_j u_j\otimes v_j$, then $a_i=b_j$ for all $i=1,2,\cdots,n$ and $j=1,2,\cdots,m$.
|
||||||
|
|
||||||
Then $\sum_{i=1}^n a_i T_1(u_i)\otimes T_2(v_i)=\sum_{j=1}^m b_j T_1(u_j)\otimes T_2(v_j)$.
|
Then $\sum_{i=1}^n a_i T_1(u_i)\otimes T_2(v_i)=\sum_{j=1}^m b_j T_1(u_j)\otimes T_2(v_j)$.
|
||||||
|
|
||||||
|
QED
|
||||||
|
</details>
|
||||||
|
|
||||||
|
An example of
|
||||||
|
|
||||||
#### Tensor product of linear operators on Hilbert spaces
|
#### Tensor product of linear operators on Hilbert spaces
|
||||||
|
|
||||||
Let $T_1$ be a linear operator on $\mathscr{H}_1$ and $T_2$ be a linear operator on $\mathscr{H}_2$, where $\mathscr{H}_1$ and $\mathscr{H}_2$ are finite-dimensional Hilbert spaces. The tensor product of $T_1$ and $T_2$ (denoted by $T_1\otimes T_2$) on $\mathscr{H}_1\otimes \mathscr{H}_2$, such that **on decomposable elements** is defined by
|
Let $T_1$ be a linear operator on $\mathscr{H}_1$ and $T_2$ be a linear operator on $\mathscr{H}_2$, where $\mathscr{H}_1$ and $\mathscr{H}_2$ are finite-dimensional Hilbert spaces. The tensor product of $T_1$ and $T_2$ (denoted by $T_1\otimes T_2$) on $\mathscr{H}_1\otimes \mathscr{H}_2$, such that **on decomposable elements** is defined by
|
||||||
|
|||||||
Reference in New Issue
Block a user