Update Math416_L5.md
This commit is contained in:
@@ -4,20 +4,24 @@
|
||||
|
||||
Let $f$ be a complex function. that maps $\mathbb{R}^2$ to $\mathbb{R}^2$. $f(x+iy)=u(x,y)+iv(x,y)$.
|
||||
|
||||
$Df(x+iy)=\begin{pmatrix}
|
||||
$$
|
||||
Df(x+iy)=\begin{pmatrix}
|
||||
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\
|
||||
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
|
||||
\end{pmatrix}=\begin{pmatrix}
|
||||
\alpha & \beta\\
|
||||
\sigma & \delta
|
||||
\end{pmatrix}$
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
So
|
||||
|
||||
$$\begin{aligned}
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{\partial f}{\partial \zeta}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\
|
||||
&=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\
|
||||
\end{aligned}$$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@@ -26,19 +30,30 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
When $f$ is conformal, $Df(x+iy)=\begin{pmatrix}
|
||||
When $f$ is conformal,
|
||||
|
||||
$$
|
||||
Df(x+iy)=\begin{pmatrix}
|
||||
\alpha & \beta\\
|
||||
-\beta & \alpha
|
||||
\end{pmatrix}$.
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
So $\frac{\partial f}{\partial \zeta}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a$
|
||||
So,
|
||||
|
||||
$\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0$
|
||||
$$
|
||||
\frac{\partial f}{\partial \zeta}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a
|
||||
$$
|
||||
|
||||
$$
|
||||
\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0
|
||||
$$
|
||||
|
||||
> Less pain to represent a complex function using four real numbers.
|
||||
|
||||
## Chapter 3: Linear fractional Transformations
|
||||
|
||||
|
||||
Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
|
||||
|
||||
The linear fractional transformation is defined as
|
||||
|
||||
Reference in New Issue
Block a user