Update Math416_L5.md

This commit is contained in:
Trance-0
2025-01-30 19:51:06 -06:00
parent fe96e311c2
commit d31e042c91

View File

@@ -4,20 +4,24 @@
Let $f$ be a complex function. that maps $\mathbb{R}^2$ to $\mathbb{R}^2$. $f(x+iy)=u(x,y)+iv(x,y)$.
$Df(x+iy)=\begin{pmatrix}
$$
Df(x+iy)=\begin{pmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{pmatrix}=\begin{pmatrix}
\alpha & \beta\\
\sigma & \delta
\end{pmatrix}$
\end{pmatrix}
$$
So
$$\begin{aligned}
$$
\begin{aligned}
\frac{\partial f}{\partial \zeta}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\
&=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\
\end{aligned}$$
\end{aligned}
$$
$$
\begin{aligned}
@@ -26,19 +30,30 @@ $$
\end{aligned}
$$
When $f$ is conformal, $Df(x+iy)=\begin{pmatrix}
When $f$ is conformal,
$$
Df(x+iy)=\begin{pmatrix}
\alpha & \beta\\
-\beta & \alpha
\end{pmatrix}$.
\end{pmatrix}
$$
So $\frac{\partial f}{\partial \zeta}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a$
So,
$\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0$
$$
\frac{\partial f}{\partial \zeta}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a
$$
$$
\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0
$$
> Less pain to represent a complex function using four real numbers.
## Chapter 3: Linear fractional Transformations
Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
The linear fractional transformation is defined as