Update Math416_L5.md
This commit is contained in:
@@ -4,20 +4,24 @@
|
|||||||
|
|
||||||
Let $f$ be a complex function. that maps $\mathbb{R}^2$ to $\mathbb{R}^2$. $f(x+iy)=u(x,y)+iv(x,y)$.
|
Let $f$ be a complex function. that maps $\mathbb{R}^2$ to $\mathbb{R}^2$. $f(x+iy)=u(x,y)+iv(x,y)$.
|
||||||
|
|
||||||
$Df(x+iy)=\begin{pmatrix}
|
$$
|
||||||
|
Df(x+iy)=\begin{pmatrix}
|
||||||
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\
|
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}\\
|
||||||
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
|
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
|
||||||
\end{pmatrix}=\begin{pmatrix}
|
\end{pmatrix}=\begin{pmatrix}
|
||||||
\alpha & \beta\\
|
\alpha & \beta\\
|
||||||
\sigma & \delta
|
\sigma & \delta
|
||||||
\end{pmatrix}$
|
\end{pmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
So
|
So
|
||||||
|
|
||||||
$$\begin{aligned}
|
$$
|
||||||
|
\begin{aligned}
|
||||||
\frac{\partial f}{\partial \zeta}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\
|
\frac{\partial f}{\partial \zeta}&=\frac{1}{2}\left(u_x+v_y\right)-i\frac{1}{2}\left(v_x+u_y\right)\\
|
||||||
&=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\
|
&=\frac{1}{2}\left(\alpha+\delta\right)-i\frac{1}{2}\left(\beta-\sigma\right)\\
|
||||||
\end{aligned}$$
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
@@ -26,19 +30,30 @@ $$
|
|||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
When $f$ is conformal, $Df(x+iy)=\begin{pmatrix}
|
When $f$ is conformal,
|
||||||
|
|
||||||
|
$$
|
||||||
|
Df(x+iy)=\begin{pmatrix}
|
||||||
\alpha & \beta\\
|
\alpha & \beta\\
|
||||||
-\beta & \alpha
|
-\beta & \alpha
|
||||||
\end{pmatrix}$.
|
\end{pmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
So $\frac{\partial f}{\partial \zeta}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a$
|
So,
|
||||||
|
|
||||||
$\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0$
|
$$
|
||||||
|
\frac{\partial f}{\partial \zeta}=\frac{1}{2}(\alpha+\alpha)+i\frac{1}{2}(\beta+\beta)=a
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}(\alpha-\alpha)+i\frac{1}{2}(\beta-\beta)=0
|
||||||
|
$$
|
||||||
|
|
||||||
> Less pain to represent a complex function using four real numbers.
|
> Less pain to represent a complex function using four real numbers.
|
||||||
|
|
||||||
## Chapter 3: Linear fractional Transformations
|
## Chapter 3: Linear fractional Transformations
|
||||||
|
|
||||||
|
|
||||||
Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
|
Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
|
||||||
|
|
||||||
The linear fractional transformation is defined as
|
The linear fractional transformation is defined as
|
||||||
|
|||||||
Reference in New Issue
Block a user