update
This commit is contained in:
@@ -126,6 +126,8 @@ def is_uniquely_decipherable(f):
|
||||
return True
|
||||
```
|
||||
|
||||
### Shannon's source coding theorem
|
||||
|
||||
#### Definition 1.1.4
|
||||
|
||||
An elementary information source is a pair $(A,\mu)$ where $A$ is an alphabet and $\mu$ is a probability distribution on $A$. $\mu$ is a function $\mu:A\to[0,1]$ such that $\sum_{a\in A}\mu(a)=1$.
|
||||
@@ -142,6 +144,35 @@ $$
|
||||
L(\mu)=\min\{\overline{l}(\mu,f)|f:A\to S(B)\text{ is uniquely decipherable}\}
|
||||
$$
|
||||
|
||||
|
||||
#### Lemma: Jenson's inequality
|
||||
|
||||
Let $f$ be a convex function on the interval $(a,b)$. Then for any $x_1,x_2,\cdots,x_n\in (a,b)$ and $\lambda_1,\lambda_2,\cdots,\lambda_n\in [0,1]$ such that $\sum_{i=1}^{n}\lambda_i=1$, we have
|
||||
|
||||
$$f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$$
|
||||
|
||||
Proof:
|
||||
|
||||
If $f$ is a convex function, there are three properties that useful for the proof:
|
||||
|
||||
1. $f''(x)\geq 0$ for all $x\in (a,b)$
|
||||
2. For any $x,y\in (a,b)$, $f(x)\geq f(y)+(x-y)f'(y)$ (Take tangent line at $y$)
|
||||
3. For any $x,y\in (a,b)$ and $0<\lambda<1$, we have $f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y)$ (Take line connecting $f(x)$ and $f(y)$)
|
||||
|
||||
We use $f(x)\geq f(y)+(x-y)f'(y)$, we replace $y=\sum_{i=1}^{n}\lambda_ix_i$ and $x=x_j$, we have
|
||||
|
||||
$$f(x_j)\geq f(\sum_{i=1}^{n}\lambda_ix_i)+(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)$$
|
||||
|
||||
We sum all the inequalities, we have
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\sum_{j=1}^{n}\lambda_j f(x_j)&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+\sum_{j=1}^{n}\lambda_j(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)\\
|
||||
&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+0\\
|
||||
&=f(\sum_{j=1}^{n}\lambda_ix_j)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
#### Theorem 1.1.5
|
||||
|
||||
Shannon's source coding theorem
|
||||
@@ -204,34 +235,6 @@ $$
|
||||
|
||||
$\log \prod_{a\in A}\left(\frac{v(a)}{\mu(a)}\right)^{\mu(a)}=\sum_{a\in A}\mu(a)\log \frac{v(a)}{\mu(a)}$ is also called Kullback–Leibler divergence or relative entropy.
|
||||
|
||||
> Jenson's inequality: Let $f$ be a convex function on the interval $(a,b)$. Then for any $x_1,x_2,\cdots,x_n\in (a,b)$ and $\lambda_1,\lambda_2,\cdots,\lambda_n\in [0,1]$ such that $\sum_{i=1}^{n}\lambda_i=1$, we have
|
||||
>
|
||||
> $$f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$$
|
||||
>
|
||||
> Proof:
|
||||
>
|
||||
> If $f$ is a convex function, there are three properties that useful for the proof:
|
||||
>
|
||||
> 1. $f''(x)\geq 0$ for all $x\in (a,b)$
|
||||
> 2. For any $x,y\in (a,b)$, $f(x)\geq f(y)+(x-y)f'(y)$ (Take tangent line at $y$)
|
||||
> 3. For any $x,y\in (a,b)$ and $0<\lambda<1$, we have $f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y)$ (Take line connecting $f(x)$ and $f(y)$)
|
||||
>
|
||||
> We use $f(x)\geq f(y)+(x-y)f'(y)$, we replace $y=\sum_{i=1}^{n}\lambda_ix_i$ and $x=x_j$, we have
|
||||
>
|
||||
> $$f(x_j)\geq f(\sum_{i=1}^{n}\lambda_ix_i)+(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)$$
|
||||
>
|
||||
> We sum all the inequalities, we have
|
||||
>
|
||||
> $$
|
||||
\begin{aligned}
|
||||
\sum_{j=1}^{n}\lambda_j f(x_j)&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+\sum_{j=1}^{n}\lambda_j(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)\\
|
||||
&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+0\\
|
||||
&=f(\sum_{j=1}^{n}\lambda_ix_j)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
|
||||
|
||||
Since $\log$ is a concave function, by Jensen's inequality $f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$, we have
|
||||
|
||||
$$
|
||||
|
||||
Reference in New Issue
Block a user