This commit is contained in:
Zheyuan Wu
2025-04-10 13:05:15 -05:00
parent c57005e834
commit de9950a9dc
3 changed files with 222 additions and 28 deletions

View File

@@ -0,0 +1,92 @@
# Math4121 Lecture 31
## Chapter 3: Lebesgue Integration
### Non-measurable sets
#### Definition: Vitali's construction
Step 1. Define an equivalence relation on $\mathbb{R}$ as follows:
Recall a relation is an equivalence relation if it is reflexive, symmetric, and transitive.
1. Reflexive: $x\sim x$ for all $x\in\mathbb{R}$
2. Symmetric: $x\sim y$ implies $y\sim x$ for all $x,y\in\mathbb{R}$
3. Transitive: $x\sim y$ and $y\sim z$ implies $x\sim z$ for all $x,y,z\in\mathbb{R}$
Say $x\sim y$ if $x-y\in\mathbb{Q}$.
This is an equivalence relation, easy to show by the properties above.
We denote the equivalence class of $x$ by $\mathbb{R}/\sim$, where $[x]=\{x+q:q\in\mathbb{Q}\}$.
If $z\in [x]$, then so is the fractional part of $z$, i.e. $z-\lfloor z\rfloor\in [x]$. So in every equivalence class $[x]$ we can find an element in $[x]\cap (0,1)$. Take one such real number from every equivalence class, and call the set of all such numbers $\mathcal{N}$.
Step 2. Show that $\mathcal{N}$ is not Lebesgue measurable.
We defined the translation of $S$ as follows:
Given a set $S\subseteq\mathbb{R}$ and a real number $a\in\mathbb{R}$, the translation of $S$ by $a$ is defined as
$$
S+a=\{x+a:x\in S\}
$$
Outer measure is translation invariant, i.e. $m_e(S+a)=m_e(S)$ for all $S\subseteq\mathbb{R}$ and $a\in\mathbb{R}$, which also holds for inner measure.
Properties of $\mathcal{N}$:
1. $(0,1)\subseteq\bigcup_{q\in \mathbb{Q}\cap (-1,1)} (\mathcal{N}+q)\subseteq (-1,2)$
2. $\{\mathcal{N}+q:q\in\mathbb{Q}\cap (-1,1)\}$ is pairwise disjoint.
Suppose $\mathcal{N}$ is measurable. Then by (1)
$$
\begin{aligned}
1&\leq \sum_{q\in\mathbb{Q}\cap (-1,1)} (\mathcal{N}+q)\\
&=\sum_{q\in\mathbb{Q}\cap (-1,1)} m(\mathcal{N})
\end{aligned}
$$
So $m(\mathcal{N})\neq 0$.
By (2), we have
$$
\begin{aligned}
3&\geq \sum_{q\in\mathbb{Q}\cap (-1,1)} m(\mathcal{N}+q)\\
&=\sum_{q\in\mathbb{Q}\cap (-1,1)} m(\mathcal{N})\\
&=m(\mathcal{N})\sum_{q\in\mathbb{Q}\cap (-1,1)} 1\\
&=\infty
\end{aligned}
$$
This is a contradiction. So $\mathcal{N}$ is not Lebesgue measurable.
QED
Appendix:
(1) $I\subseteq\bigcup_{q\in\mathbb{Q}\cap (-1,1)} (\mathcal{N}+q)$
Let $x\in I$. We need to find $q\in\mathbb{Q}\cap (-1,1)$ such that $x-q\in\mathcal{N}$. $\exists y\in\mathcal{N}$ such that $y\in (0,1)\cap [x]$. Then $x-y=q\in \mathbb{Q}$ and since $x,y\in I$, we have $q\in (-1,1)$.
(2) $\{\mathcal{N}+q:q\in\mathbb{Q}\cap (-1,1)\}$ is pairwise disjoint.
Suppose $\mathcal{N}+q_1=\mathcal{N}+q_2$ for some $q_1,q_2\in\mathbb{Q}\cap (-1,1)$. We want to show $q_1=q_2$.
Take $x$ in the intersection, then this means $y=x-q_1, z=x-q_2\in\mathcal{N}$.
But $y\sim z$, this contradicts the fact that $\mathcal{N}$ contains only one element from each equivalence class. So $q_1=q_2$.
#### Axiom of choice
Given a set $S$, $\exists \psi:\mathscr{P}(S)\to S$ such that $\psi(T)\in T, \forall T\subseteq\mathscr{P}(S)$.
For any set $S$, there exists a map that maps every non-empty subset of $S$ to an element of that subset.
This leads to some weird results, e.g. Banach-Tarski paradox.
_Godel showed that the axiom of choice is not contradictory to ZF set theory._ You have ZFC
_Cohen showed that the negation of the axiom of choice is not contradictory to ZF set theory._ You have ZF
You can choose the axiom or not.

View File

@@ -0,0 +1,99 @@
# Math4121 Lecture 32
## Chapter 6: The Lebesgue Integral
### Measurable Functions
Definition: A function $f:\mathbb{R}\to\mathbb{R}$ is measurable on the interval $[a,b]$ if $\{x\in [a,b]:f(x) > c\}$ is measurable for all $c\in\mathbb{R}$, called the **super level set** of $f$.
Denote $\{f> c\}$
#### Proposition 6.1
The following are equivalent:
For all $c\in\mathbb{R}$,
1. $\{x\in [a,b]:f(x) > c\}$ is measurable.
2. $\{x\in [a,b]:f(x) < c\}$ is measurable.
3. $\{x\in [a,b]:f(x) \geq c\}$ is measurable.
4. $\{x\in [a,b]:f(x) \leq c\}$ is measurable.
5. $\{x\in \mathbb{R}:c \leq f(x) < d\}$ is measurable for all $c,d\in\mathbb{R}$.
Proof:
Since the complement of a measurable set is measurable. (1) $\iff$ (4). and (2) $\iff$ (3).
We only need to show (1) $\implies$ (2).
Since $\{f>c\}=\bigcup_{n=1}^{\infty}\{f\geq c+\frac{1}{n}\}$.
So (1) $\implies$ (2).
Since (2) $\implies$ (1)-(4) $\implies$ (5).
To see (5) $\implies$ (1), we have $\{f\geq c\}=\bigcup_{n=1}^{\infty}\{x\in\mathbb{R}:c \leq f(x) < c+n\}$
QED
#### Proposition 6.3
Let $f,g$ be measurable on $[a,b]$ and $\alpha\in\mathbb{R}$. Then the following are measurable:
1. $f+g$
2. $fg$
3. $\alpha f$
4. $|f|^\alpha$
Proof:
If $\alpha=0$, then $\alpha f$ and $|f|^\alpha$ are constant functions, hence measurable.
But for constant functions $h$, $\{h>c\}=\begin{cases}
\emptyset & \text{if } c\geq h \\
\mathbb{R} & \text{if } c < h
\end{cases}$
For $a\neq 0$, $\{x\in \mathbb{R}:\alpha f(x) > c\}=\{x\in \mathbb{R}:f(x) > \frac{c}{\alpha}\}$
Similarly, $\{x\in \mathbb{R}:|f(x)|^\alpha > c\}=\{x\in \mathbb{R}:|f(x)| > c^{1/\alpha}\}=\{x\in \mathbb{R}:f(x) > c^{1/\alpha}\}\cup\{x\in \mathbb{R}:f(x) < -c^{1/\alpha}\}$
We want to show $\{f+g>c\}=\bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}$
$\{f+g>c\}\supseteq \bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}$
if $x$ is in the RHS, then $\exists q\in \mathbb{Q}$ such that $f(x) > q$ and $g(x) > c-q$, therefore $f(x)+g(x) > c$.
So $x$ is in the LHS.
$\{f+g>c\}\subseteq \bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}$
Let $x\in \mathbb{R}$ such that $f(x)+g(x) > c$. Need to find $q\in \mathbb{Q}$ such that $f(x) > q$ and $g(x) > c-q$.
Since $f(x)>c-g(x)$, by the density of $\mathbb{Q}$ in $\mathbb{R}$, $\exists q\in \mathbb{Q}$ such that $q > c-g(x)$.
For $fg$, we have $fg=\frac{1}{4}((f+g)^2-(f-g)^2)$
So $fg$ is measurable.
QED
### Limit of Measurable Functions
#### Proposition 6.4
Let $\{f_n\}$ be a sequence of measurable functions on $[a,b]$. Then,
$$
g(x)=\sup_{n\geq 1}f_n(x),\inf_{n\geq 1}f_n(x),\limsup_{n\to\infty}f_n(x),\liminf_{n\to\infty}f_n(x)
$$
are all measurable functions
#### Corollary of Proposition 6.4
If $\{f_n\}_{n=1}^{\infty}$ are measurable functions and $f(x)=\lim_{n\to\infty}f_n(x)$ exists for all $x\in[a,b]$, then $f$ is measurable. (pointwise limit of measurable functions is measurable)
#### Definition of almost everywhere
A property holds **almost everywhere** if it holds everywhere except for a set of measure zero.

View File

@@ -126,6 +126,8 @@ def is_uniquely_decipherable(f):
return True return True
``` ```
### Shannon's source coding theorem
#### Definition 1.1.4 #### Definition 1.1.4
An elementary information source is a pair $(A,\mu)$ where $A$ is an alphabet and $\mu$ is a probability distribution on $A$. $\mu$ is a function $\mu:A\to[0,1]$ such that $\sum_{a\in A}\mu(a)=1$. An elementary information source is a pair $(A,\mu)$ where $A$ is an alphabet and $\mu$ is a probability distribution on $A$. $\mu$ is a function $\mu:A\to[0,1]$ such that $\sum_{a\in A}\mu(a)=1$.
@@ -142,6 +144,35 @@ $$
L(\mu)=\min\{\overline{l}(\mu,f)|f:A\to S(B)\text{ is uniquely decipherable}\} L(\mu)=\min\{\overline{l}(\mu,f)|f:A\to S(B)\text{ is uniquely decipherable}\}
$$ $$
#### Lemma: Jenson's inequality
Let $f$ be a convex function on the interval $(a,b)$. Then for any $x_1,x_2,\cdots,x_n\in (a,b)$ and $\lambda_1,\lambda_2,\cdots,\lambda_n\in [0,1]$ such that $\sum_{i=1}^{n}\lambda_i=1$, we have
$$f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$$
Proof:
If $f$ is a convex function, there are three properties that useful for the proof:
1. $f''(x)\geq 0$ for all $x\in (a,b)$
2. For any $x,y\in (a,b)$, $f(x)\geq f(y)+(x-y)f'(y)$ (Take tangent line at $y$)
3. For any $x,y\in (a,b)$ and $0<\lambda<1$, we have $f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y)$ (Take line connecting $f(x)$ and $f(y)$)
We use $f(x)\geq f(y)+(x-y)f'(y)$, we replace $y=\sum_{i=1}^{n}\lambda_ix_i$ and $x=x_j$, we have
$$f(x_j)\geq f(\sum_{i=1}^{n}\lambda_ix_i)+(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)$$
We sum all the inequalities, we have
$$
\begin{aligned}
\sum_{j=1}^{n}\lambda_j f(x_j)&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+\sum_{j=1}^{n}\lambda_j(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)\\
&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+0\\
&=f(\sum_{j=1}^{n}\lambda_ix_j)
\end{aligned}
$$
#### Theorem 1.1.5 #### Theorem 1.1.5
Shannon's source coding theorem Shannon's source coding theorem
@@ -204,34 +235,6 @@ $$
$\log \prod_{a\in A}\left(\frac{v(a)}{\mu(a)}\right)^{\mu(a)}=\sum_{a\in A}\mu(a)\log \frac{v(a)}{\mu(a)}$ is also called KullbackLeibler divergence or relative entropy. $\log \prod_{a\in A}\left(\frac{v(a)}{\mu(a)}\right)^{\mu(a)}=\sum_{a\in A}\mu(a)\log \frac{v(a)}{\mu(a)}$ is also called KullbackLeibler divergence or relative entropy.
> Jenson's inequality: Let $f$ be a convex function on the interval $(a,b)$. Then for any $x_1,x_2,\cdots,x_n\in (a,b)$ and $\lambda_1,\lambda_2,\cdots,\lambda_n\in [0,1]$ such that $\sum_{i=1}^{n}\lambda_i=1$, we have
>
> $$f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$$
>
> Proof:
>
> If $f$ is a convex function, there are three properties that useful for the proof:
>
> 1. $f''(x)\geq 0$ for all $x\in (a,b)$
> 2. For any $x,y\in (a,b)$, $f(x)\geq f(y)+(x-y)f'(y)$ (Take tangent line at $y$)
> 3. For any $x,y\in (a,b)$ and $0<\lambda<1$, we have $f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y)$ (Take line connecting $f(x)$ and $f(y)$)
>
> We use $f(x)\geq f(y)+(x-y)f'(y)$, we replace $y=\sum_{i=1}^{n}\lambda_ix_i$ and $x=x_j$, we have
>
> $$f(x_j)\geq f(\sum_{i=1}^{n}\lambda_ix_i)+(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)$$
>
> We sum all the inequalities, we have
>
> $$
\begin{aligned}
\sum_{j=1}^{n}\lambda_j f(x_j)&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+\sum_{j=1}^{n}\lambda_j(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)\\
&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+0\\
&=f(\sum_{j=1}^{n}\lambda_ix_j)
\end{aligned}
$$
Since $\log$ is a concave function, by Jensen's inequality $f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$, we have Since $\log$ is a concave function, by Jensen's inequality $f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$, we have
$$ $$