Update Math401_T3.md
This commit is contained in:
@@ -42,7 +42,7 @@ The inner product space $L^2(\mathbb{R},\lambda)$ is complete.
|
||||
|
||||
#### Definition of general Hilbert space
|
||||
|
||||
A Hilbert space is a complete inner product space.
|
||||
A Hilbert space is a complete inner product vector space.
|
||||
|
||||
#### General Pythagorean theorem
|
||||
|
||||
@@ -66,6 +66,41 @@ Immediate from the general Pythagorean theorem.
|
||||
|
||||
### Orthonormal bases
|
||||
|
||||
An orthonormal subset $S$ of a Hilbert space $\mathscr{H}$ is a set all of whose elements have norm 1 and are mutually orthogonal. ($\forall u,v\in S, \langle u,v\rangle=0$)
|
||||
|
||||
#### Definition of orthonormal basis
|
||||
|
||||
An orthonormal basis of a Hilbert space $\mathscr{H}$ is a set of orthonormal vectors that spans $\mathscr{H}$.
|
||||
An orthonormal subset of $S$ of a Hilbert space $\mathscr{H}$ is an orthonormal basis of $\mathscr{H}$ if there are no other orthonormal subsets of $\mathscr{H}$ that contain $S$ as a proper subset.
|
||||
|
||||
#### Theorem of existence of orthonormal basis
|
||||
|
||||
Every separable Hilbert space has an orthonormal basis.
|
||||
|
||||
[Proof ignored here]
|
||||
|
||||
#### Theorem of Fourier series
|
||||
|
||||
Let $\mathscr{H}$ be a separable Hilbert space with an orthonormal basis $\{e_n\}$. Then for any $f\in \mathscr{H}$,
|
||||
|
||||
$$
|
||||
f=\sum_{n=1}^\infty \langle f,e_n\rangle e_n
|
||||
$$
|
||||
|
||||
The series converges to some $g\in \mathscr{H}$.
|
||||
|
||||
[Proof ignored here]
|
||||
|
||||
#### Fourier series in $L^2([0,2\pi],\lambda)$
|
||||
|
||||
Let $f\in L^2([0,2\pi],\lambda)$.
|
||||
|
||||
$$
|
||||
f_N(x)=\sum_{n:|n|\leq N} c_n\frac{e^{inx}}{\sqrt{2\pi}}
|
||||
$$
|
||||
|
||||
where $c_n=\frac{1}{2\pi}\int_0^{2\pi} f(x)e^{-inx} dx$.
|
||||
|
||||
The series converges to some $f\in L^2([0,2\pi],\lambda)$ as $N\to \infty$.
|
||||
|
||||
This is the Fourier series of $f$.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user