updates
This commit is contained in:
@@ -32,7 +32,8 @@ Proof of the validity of the decryption: Exercise.
|
||||
|
||||
The encryption scheme is secure under this construction (Trapdoor permutation (TDP), Hardcore bit (HCB)).
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We proceed by contradiction. (Constructing contradiction with definition of hardcore bit.)
|
||||
|
||||
@@ -76,7 +77,7 @@ $$
|
||||
|
||||
This contradicts the definition of hardcore bit.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Public key encryption scheme (multi-bit)
|
||||
|
||||
@@ -144,7 +145,8 @@ Output: $m$
|
||||
|
||||
#### Security of El-Gamal encryption scheme
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
If not secure, then there exists a distinguisher $\mathcal{D}$ that can distinguish the encryption of $m_1,m_2\in G_q$ with non-negligible probability $\mu(n)$.
|
||||
|
||||
@@ -155,5 +157,5 @@ $$
|
||||
|
||||
And proceed by contradiction. This contradicts the DDH assumption.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
|
||||
Reference in New Issue
Block a user