updates
This commit is contained in:
@@ -202,8 +202,6 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
QED
|
||||
|
||||
</details>
|
||||
|
||||
#### Proof of the Levy's concentration theorem via the Maxwell-Boltzmann distribution law
|
||||
|
||||
@@ -187,7 +187,8 @@ $$
|
||||
|
||||
where $L(\mu)$ is the minimum mean code word length of all uniquely decipherable codes for $(A,\mu)$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
First, we show that
|
||||
|
||||
@@ -278,7 +279,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Entropy
|
||||
|
||||
@@ -387,13 +388,9 @@ n−1 symbols.
|
||||
By the inductive hypothesis, the code on $A'$ is optimal.
|
||||
is optimal.
|
||||
|
||||
By Step 2 above, assigning the two merged symbols $a$ and $b$ codewords $w_0$ and $w_1$ (based on
|
||||
1
|
||||
$w_1$ (based on $c$'s codeword $w$) results in the optimal solution for $A$.
|
||||
By Step 2 above, assigning the two merged symbols $a$ and $b$ codewords $w_0$ and $w_1$ (based on 1.1.4) results in the optimal solution for $A$.
|
||||
|
||||
Therefore, by induction, Huffman’s algorithm gives an optimal prefix code for any $n$.
|
||||
|
||||
QED
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user