updates
This commit is contained in:
@@ -24,7 +24,8 @@ $\equiv\cancel{\exist} p\in \mathbb{Q}, p^2=2$
|
||||
|
||||
$\equiv p\in \mathbb{Q},p^2\neq 2$
|
||||
|
||||
#### Proof
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Suppose for contradiction, $\exist p\in \mathbb{Q}$ such that $p^2=\mathbb{Q}$.
|
||||
|
||||
@@ -36,7 +37,7 @@ So $m^2$ is divisible by 4, $2n^2$ is divisible by 4.
|
||||
|
||||
So $n^2$ is even. but they are not both even.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Theorem (No closest rational for a irrational number)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user