updates
This commit is contained in:
@@ -47,19 +47,18 @@ Let $S$ be an ordered set and $E\subset S$. We say $\alpha\in S$ is the LUB of $
|
||||
1. $\alpha$ is the UB of $E$. ($\forall x\in E,x\leq \alpha$)
|
||||
2. if $\gamma<\alpha$, then $\gamma$ is not UB of $E$. ($\forall \gamma <\alpha, \exist x\in E$ such that $x>\gamma$ )
|
||||
|
||||
#### Lemma
|
||||
|
||||
Uniqueness of upper bounds.
|
||||
#### Lemma (Uniqueness of upper bounds)
|
||||
|
||||
If $\alpha$ and $\beta$ are LUBs of $E$, then $\alpha=\beta$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Suppose for contradiction $\alpha$ and $\beta$ are both LUB of $E$, then $\alpha\neq\beta$
|
||||
|
||||
WLOG $\alpha>\beta$ and $\beta>\alpha$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
We write $\sup E$ to denote the LUB of $E$.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user