This commit is contained in:
Trance-0
2025-10-27 11:56:32 -05:00
parent 0d93eb43d3
commit fb1ffcd040
17 changed files with 219 additions and 134 deletions

View File

@@ -47,19 +47,18 @@ Let $S$ be an ordered set and $E\subset S$. We say $\alpha\in S$ is the LUB of $
1. $\alpha$ is the UB of $E$. ($\forall x\in E,x\leq \alpha$)
2. if $\gamma<\alpha$, then $\gamma$ is not UB of $E$. ($\forall \gamma <\alpha, \exist x\in E$ such that $x>\gamma$ )
#### Lemma
Uniqueness of upper bounds.
#### Lemma (Uniqueness of upper bounds)
If $\alpha$ and $\beta$ are LUBs of $E$, then $\alpha=\beta$.
Proof:
<details>
<summary>Proof</summary>
Suppose for contradiction $\alpha$ and $\beta$ are both LUB of $E$, then $\alpha\neq\beta$
WLOG $\alpha>\beta$ and $\beta>\alpha$.
QED
</details>
We write $\sup E$ to denote the LUB of $E$.