updates
This commit is contained in:
@@ -26,7 +26,8 @@ Let $S=\mathbb{Z}$.
|
||||
|
||||
Proof that $LUBP\implies GLBP$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $S$ be an ordered set with LUBP. Let $B<S$ be non-empty and bounded below.
|
||||
|
||||
@@ -57,7 +58,7 @@ Let's say $\alpha=sup\ L$. We claim that $\alpha=inf\ B$. We need to show $2$ th
|
||||
|
||||
Thus $\alpha=inf\ B$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Field
|
||||
|
||||
|
||||
Reference in New Issue
Block a user