updates
This commit is contained in:
@@ -30,7 +30,8 @@ $\forall x\in \mathbb{R}_{>0},\forall n\in \mathbb{N},\exist$ unique $y\in \math
|
||||
|
||||
(Because of this Theorem we can define $x^{1/x}=y$ and $\sqrt{x}=y$)
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We cna assume $n\geq 2$ (For $n=1,y=x$)
|
||||
|
||||
@@ -94,7 +95,7 @@ So want $k\leq \frac{y^n-x}{ny^{n-1}}$
|
||||
|
||||
[For actual proof, see the text.]
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Complex numbers
|
||||
|
||||
@@ -151,7 +152,8 @@ $$
|
||||
(\sum a_j b_j)^2=(\sum a_j^2)(\sum b_j^2)
|
||||
$$
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
For real numbers:
|
||||
|
||||
@@ -169,7 +171,7 @@ let $t=C/B$ to get $0\leq A-2(C/B)C+(C/B)^2B=A-\frac{C^2}{B}$
|
||||
|
||||
to generalize this to $\mathbb{C}$, $A=\sum |a_j|^2,B=\sum |b_j|^2,C=\sum |a_j \bar{b_j}|$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Euclidean spaces
|
||||
|
||||
|
||||
Reference in New Issue
Block a user