This commit is contained in:
Trance-0
2025-10-27 11:56:32 -05:00
parent 0d93eb43d3
commit fb1ffcd040
17 changed files with 219 additions and 134 deletions

View File

@@ -126,7 +126,8 @@ $A$ is countable, $n\in \mathbb{N}$,
$\implies A^n=\{(a_{1},...,a_{n}):a_1\in A, a_n\in A\}$, is countable.
Proof:
<details>
<summary>Proof</summary>
Induct on $n$,
@@ -138,7 +139,7 @@ Induction step: suppose $A^{n-1}$ is countable. Note $A^n=\{(b,a):b\in A^{n-1},a
Since $b$ is fixed, so this is in 1-1 correspondence with $A$, so it's countable by Theorem 2.12.
QED
</details>
#### Theorem 2.14