Files
NoteNextra-origin/content/CSE510/CSE510_L15.md
Zheyuan Wu c41f7204a8 updates
2025-10-17 11:52:31 -05:00

4.6 KiB

CSE510 Deep Reinforcement Learning (Lecture 15)

Motivation

For policy gradient methods over stochastic policies


\pi_\theta(a|s) = P[a|s,\theta]

Advantages

  • Potentially learning optimal solutions for multi-agent settings
  • Dealing with partial observable settings
  • Sufficient exploration

Disadvantages

  • Can not learning a deterministic policy
  • Extension to continuous action space is not straightforward

On-Policy vs. Off-Policy Policy Gradients

On-Policy Policy Gradients:

  • Training samples are collected according to the current policy.

Off-Policy Algorithms:

  • Enable the reuse of past experience.
  • Samples can be collected by an exploratory behavior policy.

How to design off-policy policy gradient?

  • Using importance sampling

Off-Policy Actor-Critic (OffPAC)

Stochastic Behavior Policy for exploration.

  • For collecting data. Labelled as \beta(a|s)

The objective function is:


\begin{aligned}
J(\theta)=\mathbb{E}_{s\sim d^\beta}[V^{\pi}(s)]
&= \sum_{s\in S} d^\beta(s) \sum_{a\in A} \pi_\theta(a|s) Q^{\pi}(s,a)\\
\end{aligned}

d^\beta(s) is the stationary distribution under the behavior policy \beta(a|s).

Solving the Off-Policy Policy Gradient


\begin{aligned}
\nabla_\theta J(\theta) &= \nabla_\theta \mathbb{E}_{s\sim d^\beta}\left[\sum_{a\in A} \pi_\theta(a|s) Q^{\pi}(s,a)\right]\\
&= \mathbb{E}_{s\sim d^\beta}\left[\sum_{a\in A} \nabla_\theta \pi_\theta(a|s) Q^{\pi}(s,a)+\pi_\theta(a|s) \nabla_\theta Q^{\pi}(s,a)\right]\\
&= \mathbb{E}_{s\sim d^\beta}\left[\sum_{a\in A} \nabla_\theta \pi_\theta(a|s) Q^{\pi}(s,a)\right]\\
&= \mathbb{E}_{s\sim d^\beta}\left[\sum_{a\in A} \beta(a|s) \frac{1}{\beta(a|s)} \nabla_\theta \pi_\theta(a|s) Q^{\pi}(s,a)\right]\\
&= \mathbb{E}_{s\sim d^\beta}\left[\sum_{a\in A} \beta(a|s) \nabla_\theta \log \beta(a|s) Q^{\pi}(s,a)\right]\\
&= \mathbb{E}_{\beta}\left[\frac{1}{\beta(a|s)} \nabla_\theta \pi_\theta(a|s) Q^{\pi}(s,a)\right]\\
&= \mathbb{E}_{\beta}\left[\frac{\pi_\theta(a|s)}{\beta(a|s)} Q^{\pi}(s,a)\nabla_\theta \log \pi_\theta(a|s)\right]\\
\end{aligned}

To compute the off-policy policy gradient, Q^{\pi}(s,a) is estimated given data collected by \beta.

Common solution:

  • Importance sampling
  • Tree backup
  • Gradient temporal-difference learning
  • Retrace [Munos et al., 2016] IMPALA

Importance Sampling

Assume that samples come in the form of episodes.

M is the number of episodes containing (s,a), t_m be the first time when (s,a) appears in episode m.

The first-visit importance sampling estimator of Q^{\pi}(s,a) is:


Q^{IS}(s,a)\coloneqq \frac{1}{M}\sum_{m=1}^M R_m w_m

R_m is the return following (s,a) in episode m.


R_m\coloneqq r_{t_m +1}+\gamma r_{t_m +2}+\cdots+\gamma^{T_m-t_m -1} r_{T_m}

w_m is the importance sampling weight:


w_m\coloneqq \frac{\pi(a_{t_m}|s_{t_m})}{\beta(a_{t_m}|s_{t_m})}\frac{\pi(a_{t_m+1}|s_{t_m+1})}{\beta(a_{t_m+1}|s_{t_m+1})}\cdots\frac{\pi(a_{T_m}|s_{T_m})}{\beta(a_{T_m}|s_{T_m})}

Per-decision algorithm

Consider the parts we used in importance sampling:


R_m w_m=\sum_{i=t_m+1}^{T_m}\gamma^{i-t_m-1} r_i \frac{\pi(a_{t_m}|s_{t_m})}{\beta(a_{t_m}|s_{t_m})}\cdots \frac{\pi(a_{t_{i-1}}|s_{t_{i-1}})}{\beta(a_{t_{i-1}}|s_{t_{i-1}})}\frac{\pi(a_{t_i}|s_{t_i})}{\beta(a_{t_i}|s_{t_i})}\cdots \frac{\pi(a_{T_m-1}|s_{T_m-1})}{\beta(a_{T_m-1}|s_{T_m-1})}

Intuitively, r_i should not depend on the actions taken after t_i.

This gives the per-decision importance sampling estimator:


Q^{PD}(s,a)\coloneqq \frac{1}{M}\sum_{m=1}^M \sum_{k=1}^{T_m-t_m} \gamma^{k-1} r_{t_m+k}\prod_{i=t_m}^{t_m+k-1} \frac{\pi(a_{t_i}|s_{t_i})}{\beta(a_{t_i}|s_{t_i})}

The per-decision importance sampling estimator is consistence and unbiased estimator of Q^{\pi}(s,a).

Proof as exercise.

Hints - Show the expectation of $Q^{PD}(s,a)$ is the same as $Q^{IS}(s,a)$. - $Q^{IS}(s,a)$ is a consistence and unbiased estimator of $Q^{\pi}(s,a)$.

Deterministic Policy Gradient (DPG)

The objective function is:


J(\theta)=\int_{s\in S} \rho^{\mu}(s) r(s,\mu_\theta(s)) ds

where \rho^{\mu}(s) is the stationary distribution under the behavior policy \mu_\theta(s).

Proof along the same lines of the standard policy gradient theorem.


\nabla_\theta J(\theta) = \mathbb{E}_{\mu_\theta}[\nabla_\theta Q^{\mu_\theta}(s,a)]=\mathbb{E}_{s\sim \rho^{\mu}}[\nabla_\theta \mu_\theta(s) \nabla_a Q^{\mu_\theta}(s,a)\vert_{a=\mu_\theta(s)}]

Issues for DPG

The formulations up to now can only use on-policy data.

Deep Deterministic Policy Gradient (DDPG)