5.8 KiB
Lecture 25
Review
Are the following statements true or false? You do not need to give a rigorous proof.
\exists N\in \mathbb{N},\forall n\geq N,\left(\frac{1}{2}\right)^n < 0.001- True, let
N = 10
- True, let
\forall \epsilon > 0,\exists N\in \mathbb{N},\forall n\geq N,\left(\frac{1}{2}\right)^n < \epsilon- True, let
N = \lceil \log_{\frac{1}{2}} \epsilon \rceil
- True, let
\forall x\in [0, 1),\forall \epsilon > 0,\exists N\in \mathbb{N},\forall n\geq N,x^n < \epsilon- True, let
N = \lceil \log_x \epsilon \rceil
- True, let
\forall \epsilon > 0,\exists N\in \mathbb{N},\forall n\geq N,\forall x\in [0, 1),x^n < \epsilon- False,
xcan be arbitrarily close to 1
- False,
\forall \epsilon > 0,\forall x\in \left[0, \frac{1}{2}\right],\exists N\in \mathbb{N},\forall n\geq N,x^n < \epsilon- True, let
N = \lceil \log_{\frac{1}{2}} \epsilon \rceil
- True, let
New Materials
Sequences and series of functions
Definition 7.1
Let (f_n) be a sequence of functions E\to \mathbb{R}. Let f:E\to \mathbb{R} be a function. We say (f_n) converges pointwise to f if \forall x\in E, \lim_{n\to \infty} f_n(x) = f(x).
i.e. \forall x\in E, \forall \epsilon > 0, \exists N\in \mathbb{N}, \forall n\geq N, |f_n(x) - f(x)| < \epsilon.
Example:
The sequence from the warm up exercise converges pointwise to f(x) = \begin{cases} 0 & x\in [0, 1) \\ 1 \text{ otherwise} \end{cases}.
To check if a series of functions converges pointwise, we can take the limit of the series as n\to \infty.
Example:
Let g_n(x):\mathbb{R}\to \mathbb{R} be defined by g_n(x) = \sum_{k=0}^{n} \frac{x^2}{(1+x^2)^n}.
g_n(x) = \sum_{k=0}^{n} \left(\frac{x^2}{(1+x^2)^n}\right)
And this is a geometric series with first term \frac{x^2}{1+x^2} and common ratio \frac{x^2}{1+x^2}.
Then \left(g_n\right) converges pointwise to g(x) =\begin{cases} 0 & x = 0 \\ 1+x^2 & \text{otherwise} \end{cases}.
This example shows that pointwise convergence does not preserve continuity. But if (f_n) converges uniformly to f, then f is continuous.
Definition 7.7
Let (f_n) be a sequence of functions E\to \mathbb{R}. We say (f_n) converges uniformly to f if \forall \epsilon > 0, \exists N\in \mathbb{N}, \forall n\geq N, \forall x\in E, |f_n(x) - f(x)| < \epsilon.
i.e. \forall \epsilon > 0, \exists N\in \mathbb{N}, such that \forall n\geq N, \forall x\in E, |f_n(x) - f(x)| < \epsilon.
f_nmust always be within[f-\epsilon, f+\epsilon]for alln\geq N.
Example:
Let f_n(x) = \frac{1}{n}\sin(n^2 x).
Ideas of proof:
Given \epsilon > 0, let N = \lceil \frac{1}{\epsilon} \rceil. (This choice of N does not depend on x.)
Then \forall n\geq N, \forall x\in \mathbb{R}, |\frac{1}{n}\sin(n^2 x)| < \epsilon.
Example:
Let f_n:[0, 1]\to \mathbb{R}, f_n(x) = x^n.
Then (f_n) does not converge uniformly to f(x) = \begin{cases} 0 & x<1 \\ 1 & x = 0 \end{cases}.
f_n does not lie in the region [0, 1] for all n.
Theorem 7.12 (Corollary of Theorem 7.11) (Uniform limit theorem)
Let (f_n) be a sequence of continuous functions E\to \mathbb{R}. If (f_n) converges uniformly to f on E, then f is continuous.
Proof:
Suppose f_n\to f uniformly and \forall n, f_n is continuous.
Let p\in E and \epsilon > 0.
Since f_n\to f uniformly, \exists N\in \mathbb{N}, \forall n\geq N, \forall x\in E, |f_n(x) - f(x)| < \epsilon.
Since f_N is continuous at p, \exists \delta > 0, such that \forall x\in E, if |f_N(x) - f_N(p)| < \epsilon.
Suppose x\in B_\delta(p). Then
\begin{aligned}
|f(x) - f(p)| &= |f(x) - f_N(x) + f_N(x) - f_N(p) + f_N(p) - f(p)| \\
&\leq |f(x) - f_N(x)| + |f_N(x) - f_N(p)| + |f_N(p) - f(p)| \\
&< 3\epsilon
\end{aligned}
The \epsilon bound would not hold if we only had pointwise convergence.
|f_N(x) - f_N(p)| < 3\epsilon.
QED
Recall: If
(s_n)is a sequence in\mathbb{R}, then(s_n)converges tosif and only if it is Cauchy.
i.e.\forall \epsilon > 0,\exists N\in \mathbb{N},\forall n, m\geq N,|s_n - s_m| < \epsilon.
Theorem 7.9 (Cauchy criterion for uniform convergence)
Let (f_n) be a sequence of functions E\to \mathbb{R}. (f_n) converges uniformly to f on E if and only if (f_n) is uniformly Cauchy.
i.e. \forall \epsilon > 0, \exists N\in \mathbb{N}, \forall n, m\geq N, \forall x\in E, |f_n(x) - f_m(x)| < \epsilon.
Proof:
Exercise.
Theorem 7.10 (Weierstrass M-test)
Let (f_n) be a sequence of functions E\to \mathbb{R} (or \mathbb{C}). Suppose
\forall n,\exists M_n\in \mathbb{R}_{\geq 0}, such that\forall x\in E,|f_n(x)| \leq M_n.\sum_{n=1}^{\infty} M_nconverges.
Then \sum_{n=1}^{\infty} f_n(x) converges uniformly on E.
i.e. The sequence of partial sums s_n(x) = \sum_{k=1}^{n} f_k(x) converges uniformly on E.
Remark:
The proof is nearly identical to the proof of the comparison test in Chapter 3.
Proof:
By Theorem 7.8, it's enough to show that (s_n) is uniformly Cauchy.
i.e. \forall \epsilon > 0, \exists N\in \mathbb{N}, \forall m\geq n\geq N, \forall x\in E, |\sum_{k=n}^{m} f_k(x)| < \epsilon.
Let \epsilon > 0. Since \sum_{n=1}^{\infty} M_n converges, \exists N\in \mathbb{N}, \forall m\geq n\geq N, \sum_{k=n}^{m} M_k < \epsilon.
Suppose m\geq n\geq N and x\in E.
\begin{aligned}
|\sum_{k=n}^{m} f_k(x)| &\leq \sum_{k=n}^{m} |f_k(x)| \\
&\leq \sum_{k=n}^{m} M_k \\
&< \epsilon
\end{aligned}
QED
Example:
Let f_n(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \cos(3^n x).
\left|\frac{1}{2^n} \cos(3^n x)\right| \leq \frac{1}{2^n}=M_n
By Weierstrass M-test, f_n(x) converges uniformly on \mathbb{R}.
By Theorem 7.12, f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \cos(3^n x) is continuous on \mathbb{R}.
Fun fact: f(x) is not differentiable at any x\in \mathbb{R}.